
Siberian Mathematical Journal, Vol. 47, No. 2, pp. 341–354, 2006
Original Russian Text Copyright c© 2006 Remeslennikov V. N. and Timoshenko E. I.

TOPOLOGICAL DIMENSIONS FOR u-GROUPS

V. N. Remeslennikov and E. I. Timoshenko UDC 512.5

Abstract: We study some problems connected with algebraic geometry over a free metabelian group.
We introduce the notions of topological dimensions which are based on the lengths of chains of irreducible
closed sets, and study these dimensions.

Keywords: algebraic dimension, metabelian group, topological dimension

1. Introduction

The article is a part of a project of establishing algebraic geometry over a free metabelian group.
Let G[X] be the free product of a given group G and the free group with basis X = {x1, . . . , xn}.

The group G[X] plays the role of the ring of polynomials in algebraic geometry over G. In accordance
with [1], the set of solutions to some system of equations over G[X] is called an algebraic subset of
the affine space Gn. We endow Gn with the Zariski topology: the algebraic subsets in Gn are taken
as a subbasis of the system of closed sets. Dual to the category of algebraic sets is the category of
coordinate groups. If B is an algebraic set then the quotient group G[X] by the annihilator of B is called
the coordinate group of B.
The dimension of an algebraic set B is defined in a standard way; namely, as the number n such

that B admits a chain of pairwise distinct irreducible closed sets:

B = B0 ⊃ B1 ⊃ · · · ⊃ Bn,
and there is no chain with more terms. To a strictly decreasing chain of irreducible algebraic sets there
corresponds a chain of proper epimorphisms (with nonidentity kernels) of the coordinate groups.
A group G is called a u-group if G enjoys the universal theory of a free metabelian group of rank ≥ 2.

Every coordinate group is known to be a u-group [2, 3]. Therefore, it is interesting to study the lengths
of chains of epimorphisms for u-groups. Depending on whether the chain contains abelian groups or not,
we define two topological dimensions for u-groups. Our article is devoted to studying these dimensions.
Theorem 1 of this article calculates the topological dimension for the groupM(Tn, Am) isomorphic to

the discrete wreath product of free abelian groups of ranks n and m. Modifying the proof of Theorem 1,
we find the nonabelian topological dimension of M(Tn, Am). We introduce the class U� of splittable
u-groups and prove that, for every nonabelian u-group G, there exists an embedding in the splittable
envelope Gsplit ∈ U�. It turns out that the topological dimensions of G and Gsplit are closely connected.
Moreover, the nonabelian topological dimensions of these groups coincide (Theorem 2). This enables us
to calculate the topological dimensions of groups by considering their splittable envelopes. Along these
lines, we find the topological dimensions of a free metabelian group (Theorems 3 and 4).

2. Splittable u-Groups

2.1. u-Groups. Suppose that G is a metabelian group, i.e., G has an abelian normal subgroup M
such that G = G/M is an abelian group. The elements of G act on M by conjugation: mg = g−1mg,
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m ∈ M , g ∈ G. Using this action, we endow M with the structure of a right ZG-module, where ZG is
the integral group ring of G.
Denote by Fit(G) the Fitting radical of G, i.e., the subgroup generated by all nilpotent normal

subgroups of G.

Definition. A torsion-free metabelian group G is called a u-group if G meets the following condi-
tions:
(1) Fit(G) is an abelian group;
(2) A = G/Fit(G) is a torsion-free abelian group;
(3) Fit(G) is torsion-free as a ZA-module.

The class of u-groups can be defined by universal axioms [3, 4]. Necessary information on u-groups
and their relationship with algebraic geometry over groups can be found in [2–4].
The definition implies that a nonabelian u-group has trivial center.
In what follows, we refer to

Proposition 1 [2]. Let G be a nonabelian u-group and let N be an isolated ideal in Fit(G). Then
the quotient group G/N is a u-group.

Some invariants α(G) and β(G) were defined for every u-group G in [2]. Recall that α(G) is equal
to the rank of the free abelian group A = G/Fit(G). Let n be the minimal rank of a free ZA-module
that includes Fit(G). Then β(G) = n. Equivalently, we can define β(G) as the maximal cardinality of
a system of elements in Fit(G) linearly independent over ZA.
The following proposition collects some assertions in [2]:

Proposition 2. If G1 and G2 are finitely generated u-groups and ϕ : G1 → G2 is an epimorphism
then
(1) α(G2) ≤ α(G1);
(2) if α(G2) = α(G1) then β(G2) ≤ β(G1); if kerϕ �= 1 and α(G2) = α(G1) then β(G2) < β(G1);
(3) if G is a nonabelian u-group admitting a system of n generators then β(G) ≤ n− 1.
2.2. The class of groups U�. Denote by U� the class of nonabelian u-groups G with the radical

Fit(G) splittable in G. We call these groups u�-groups.
Let A be a group and let T be a ZA-module. Denote by M(T,A) the group of matrices

M(T,A) =

{(
a 0
t 1

)
, a ∈ A, t ∈ T

}
.

Identify the group A with the matrix group

(
A 0
0 1

)
and the module T , with the module

(
1 0
T 1

)
.

If T is torsion-free then the Fitting radical ofM(T,A) coincides with the subgroup T̃ and the Fitting
quotient group is isomorphic to A.

Lemma 1. Suppose that G = M(T,A) and G = M(T ,A) and let ϕ : G → G be an epimorphism.
If G and G are u-groups then
(1) ϕ(T ) = T ,

(2) G ∼=M(T , ϕ(A)).
Proof. (1) Since the epimorphism ϕ takes the Fitting radical into the Fitting radical, ϕ(T ) ≤ T .

Suppose that τ̄ ∈ T and g =
(
a 0
t 1

)
is the preimage of τ̄ in G. Then the image of the element

(
a 0
0 1

)

is in T . The element ϕ(a) commutes with the subgroup ϕ(A). On the other hand, ϕ(a) belongs to T

and, hence, commutes with ϕ(T ). Therefore, ϕ(a) = 1 and τ̄ is the image of

(
1 0
t 1

)
.
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(2) Since ϕ(T ) = T , it suffices to prove that T ∩ ϕ(A) = 1. Assume that t̄ ∈ T and t̄ = ϕ(a), a ∈ A.
Then

[ϕ(a), ϕ(A)] = [ϕ(a), T ] = 1,

i.e., ϕ(a) = 1. The lemma is proven.

Proposition 3. The following are equivalent for a nonabelian u-group G:
(1) G is a u�-group;
(2) G ∼=M(T,A) for some torsion-free abelian group A and some torsion-free ZA-module T ;
(3) G is a quotient of M(F,A), where A is a torsion-free abelian group and F is a free ZA-module.

Proof. (1) ⇒ (2). Put T = Fit(G), A = G/T . Since the subgroup T is splittable in G, it follows
that G ∼=M(T,A).
(2) ⇒ (3). Suppose that F is a free ZA-module and F/N ∼= T . Then G is a homomorphic image

of M(F,A) and the kernel of the homomorphism coincides with the subgroup

(
1 0
N 1

)
.

(3)⇒ (1). Assume that ϕ :M(F,A)→ G and R = kerϕ. Prove that

R =

(
A1 0
R1 1

)

for some ZA-submodule R1 in F and some abelian subgroup A1 in A. Since G is a u-group, this will
finish the proof.

Let g =

(
a 0
t 1

)
be an element in R. Prove that

(
a 0
0 1

)
and

(
1 0
t 1

)
also belong to R.

Indeed, there exists an element c in F that does not belong to R. Otherwise, G is abelian. Since c
belongs to the Fitting radical ofM(F,A), its image ϕ(c) belongs to Fit(G) and ϕ(c) �= 1. The commutator
[c, g] = ca−1 lies in R. Therefore,

ϕ(c)ϕ(a)−1 = 1.

Since Fit(G) is torsion-free, ϕ(a) = 1. Hence, a, t ∈ R. The proposition is proven.
Since R is a normal subgroup in M(F,A), it follows that R1 ≥ F (A1 − 1) and, thus,

G ∼=
(
A/A1 0
F/R1 1

)
.

We will need the following lemma which bounds β(G) for finitely generated groups in U�.

Lemma 2. Assume that a u-group G is a homomorphic image of the group M(F,A), where F is
a free ZA-module of rank n. Then β(G) ≤ n.
Proof. Lemma 1 and Proposition 3 imply that G = M(T,B), where the ZB-module T is a ho-

momorphic image of the ZA-module F ; moreover, the module homomorphism agrees with the group
homomorphism A → B. Consequently, T is generated by at most n elements. Since β(G) is the cardi-
nality of a maximal linear independent system of elements in T , it follows that β(G) ≤ n.
2.3. Splittable envelopes and standard embeddings. The following proposition makes it pos-

sible to embed an arbitrary u-group in a group of class U� having the same α and β as the initial group.

Proposition 4. Suppose that G is a nonabelian u-group; T = Fit(G); G = G/T ; ḡ is the image of
an element g ∈ G under the natural homomorphism G → G; n ≥ 1; h1, . . . , hn are fixed elements in G.
Assume that h̄1 �= 1 and h̄1 is different from h̄2, . . . , h̄n. Then the mapping

g �→
(

ḡ 0
n∏
i=1
[g, hi] 1

)
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is an embedding of G in the matrix group M(T,G). Moreover, if δ is the element h̄1 + · · · + h̄n − n in
ZG then

Tα =

(
1 0

T · δ 1

)
.

Proof. For j = 1, 2, we have

gαj =

(
ḡj 0

n∏
i=1
[gj , hi] 1

)
.

Then

(g1g2)
α =

(
ḡ1ḡ2 0

n∏
i=1
[g1g2, hi] 1

)
=

(
ḡ1ḡ2 0

n∏
i=1
[g1, hi]

g2 [g2, hi] 1

)
.

Since, in the module notation,

[g1, hi]
g2 [g2, hi] = [g1, hi] · ḡ2 + [g2, hi],

it follows that (g1g2)
α = gα1 g

α
2 .

Prove that kerϕ = 1. Take g ∈ kerϕ. Then g belongs to T . Consequently,
n∏
i=1

[g, hi] = g
h̄1+···+h̄n−n.

By assumption, the element h̄1 + · · ·+ h̄n − n is nonzero. Since the ZG-module T is torsion-free, g = 1.
The proposition is proven.

Let G be a u-group. We call a group H of class U� a splittable envelope for G if the groups
H = H/Fit(H) and G = G/Fit(G) are isomorphic and the ZG-module Fit(G) is isomorphic to the ZH-
module Fit(H). If A is an abelian group then a splittable envelope of A is by definition A. Proposition 4
enables us to construct a splittable envelope for an arbitrary u-group.

We call the group M(T,G) and the embedding G
α−→ M(T,G) constructed in Proposition 4 the

standard splittable envelope and standard embedding corresponding to h1, . . . , hn. Denote them by
Gsplit(h1, . . . , hn) and α(h1, . . . , hn). If the elements h1, . . . , hn are predefined then we write Gsplit and α.
It is easy to prove

Proposition 5 (Occurrence Criterion). Let α : G → Gsplit be the standard embedding of a non-
abelian u-group G in the standard splittable envelope corresponding to g1, . . . , gn. Put T = Fit(G),

G = G/T , δ = ḡ1 + · · ·+ ḡn − n. An element
(
a 0
t 1

)
, a ∈ G, t ∈ T , of Gsplit lies in Gα if and only if

(1) there exists g ∈ G such that ḡ = a;
(2) the element t−∏n

i=1[g, gi] of the ZG-module T divides by δ.

Proof immediately ensues from the fact that
∏n
i=1[g, gi] = g

δ for g ∈ T .
Proposition 6. Let G1

ϕ−→ G2 be an epimorphism of nonabelian u-groups and let g be an element
of G1 with the property that g

ϕ does not belong to the subgroup Fit(G2), G1,split = G1,split(g), G2,split =
G2,split(g

ϕ). Then there exists a homomorphism

ψ : G1,split → G2,split

such that the diagram
G1 −−−→

ϕ
G2⏐⏐�α1(g)
⏐⏐�α2(gϕ)

G1,split −−−→
ψ

G2,split

commutes.
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Proof. Suppose that Ti = Fit(Gi), Gi = Gi/Ti, f ∈ G1, t ∈ T1. Define a mapping ψ :M(T1, G1)→
M(T2, G2) by the rule (

f̄ 0
t 1

)
ψ�→
(
f̄ϕ 0
tϕ 1

)
,

where ϕ : G1 → G2 is the induced homomorphism.
It is easy to check that ψ is a homomorphism and the diagram commutes. The assertion is proven.
We can show that the so-constructed homomorphism is not necessarily an epimorphism.

2.4. Localization of groups of class U�. Let G = M(T,A) be a group of class U�, R = ZA.
Choose a multiplicatively closed set S with unity in the ring R. Standardly construct the quotient ring
S−1R with respect to S and the S−1R-module S−1T . Note that R is embedded in S−1R and the R-
module T is embedded in the S−1R-module S−1T . Moreover, we obtain an embedding of G into the
group Gs =M(S

−1T,A) of class U�, defined as follows:(
a 0
t 1

)
�→
(
a/1 0
t/1 1

)
.

Definition. The group Gs is called the localization of the u�-group G with respect to S.

Proposition 7. Suppose that G =M(T,A) and G =M(T ,A) are groups of class U� and ϕ : G→ G

is an epimorphism and ϕ(A) = A. Put R = ZA, R = ZA and let ψ : R→ R be the ring homomorphism
induced mapping ϕ : A→ A. Let S be a multiplicatively closed subset in R and let S be its image in R.
If the intersection S ∩ kerψ is empty then the epimorphism ϕ can be extended to a group epimorphism

ϕs : Gs → Gs̄

of the localizations of these groups with respect to S and S.

Proof. Consider the mapping of groups ϕs : Gs → Gs̄ defined as

ϕs :

(
a 0
t/s 1

)
�→
(

aϕ 0
tϕ/sψ 1

)
.

If t1/s1 = t2/s2 then (
a 0

t1/s1 1

)ϕs
=

(
a 0

t2/s2 1

)ϕs
,

i.e., ϕs is well defined. Check that ϕs is a homomorphism. Suppose that(
ai 0
ti/si 1

)ϕs
=

(
a
ϕ
i 0

t
ϕ
i /s

ψ
i 1

)
,

i = 1, 2. We have (
a1 0
t1/s1 1

)(
a2 0
t2/s2 1

)
=

(
a1a2 0

(t1 · a2s2 + t2s1)/s1s2 1

)
.

Then

(
a1a2 0

(t1 · a2s2 + t2s1)/s1s2 1

)ϕs
=

(
a
ϕ
1 a

ϕ
2 0

(t1 · a2s2 + t2s1)ϕ/sψ1 sψ2 1

)

=

(
a
ϕ
1 a

ϕ
2 0

(tϕ1 · (a2s2)ψ + tϕ2 sψ1 )/sψ1 sψ2 1

)
=

(
a
ϕ
1 0

t
ϕ
1 /s

ψ
1 1

)(
a
ϕ
2 0

t
ϕ
2 /s

ψ
2 1

)
.

The proposition is proven.
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Proposition 8. Let Gs be the localization of a u�-group G =M(T,A) with respect to S. If S does
not contain the zero element then β(G) = β(Gs).

The following proposition is useful in calculating the topological dimensions of splittable u-groups:

Proposition 9. Let ϕ : G → G be an epimorphism of finitely generated groups of class U�. If
α(G) = α(G)− 1 then β(G) ≤ β(G).
Proof. Suppose that G = M(T,A), G = M(T ,A), where A and A are free abelian groups of

finite ranks, R = ZA,R = ZA, and T and T are finitely generated torsion-free modules over R and R
respectively.

Denote by ϕA the restriction of ϕ to the subgroup A =

(
A 0
0 1

)
. By Lemma 1, we may assume

that ϕA(A) = A. Again by Lemma 1, ϕ(T ) =

(
1 0
T 1

)
= T .

Let a1, . . . , am be a basis of A, ϕA(aj) = āj , j = 2, . . . ,m, ϕA(a1) = 1, and the elements ā2, . . . , ām
form a basis of A.
Take the set of nonzero elements of the integral group ring Z〈a2, . . . , am〉 as a multiplicative set S.
Extend the homomorphism ϕA : A → A to a ring homomorphism ϕ̃A : R → R. Since ker ϕ̃A ∩ S

is empty, by Proposition 7 the epimorphism ϕ can be extended to an epimorphism of the corresponding
localizations:

ϕS : GS → GS ,

where S = ϕA(S). Moreover, ϕS(S
−1T ) = S−1T . By Proposition 8,

β(G) = β(GS), β(G) = β(GS).

The quotient ring S
−1
R is a field. Denote it by P . Then S−1R = P 〈a1〉 is the ring of Laurent polynomials

in a1 over the field P . Hence, S
−1R is a principal ideal domain. In this case, the torsion-free module

S−1T is free over S−1R.
Denote by β(T ) the maximal number of linearly independent elements in the R-module T . We infer

β(G) = β(T ) = β(S
−1
T ) = β(ϕS(S

−1T )).

But S−1T is a free S−1R-module. Therefore,

β(ϕS(S
−1T )) ≤ β(S−1T ) = β(G).

The proposition is proven.

3. Topological Dimension for u-Groups

Definition. Let G be a finitely generated u-group. Consider the sequence of u-groups Gi and
epimorphisms ϕj with nontrivial kernels ker(ϕj):

G = G0
ϕ1−→ G1

ϕ2−→ . . .
ϕl−1−→ Gl−1

ϕl−→ 1.
Call such a sequence a u-sequence of length l = l(G).
From Proposition 3 it follows that, for a u�-group G, all nonabelian terms of the sequence are

u�-groups.

Definition. The maximal length l(G) of all u-sequences for a finitely generated u-group G is called
its topological dimension and denoted by tdim(G). If we restrict exposition only to the u-sequences
whose all terms are nonabelian u-groups then we arrive at the notions of a nonabelian u-sequence and
the nonabelian topological dimension which we denote by tdim0(G).
We put the topological dimensions of the trivial group to be zero.
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From the standpoint of applications to algebraic geometry over a group G, the nonabelian topological
dimension is more substantial.
Denote by r0(G) the number of infinite cyclic groups in the decomposition of an abelian group

G/[G,G] into a product of cyclic groups. It is easy to establish the following inequality:

tdim(G) ≤ tdim0(G) + r0(G).
Lemma 3. Let A be a free abelian group with basis a1, . . . , am and let T be a free ZA-module with

basis t1, . . . , tn, n ≥ 2. For i = 1, . . . , n− 1, we put
τi = ti(1− a1) + ti+1(1− a2).

Let Ti be the submodule in T generated by τ1, . . . , τi. Then Ti are isolated submodules in T .

Proof. Assume that some t ∈ T and 0 �= γ ∈ ZA meet the conditions t /∈ Ti but tγ ∈ Ti. We may
assume that γ is a nondecomposable element of the integral domain ZA. Suppose that

t = t1α1 + · · ·+ ti+1αi+1,
where α1, . . . , αi+1 ∈ ZA. From the equality

tγ = τ1β1 + · · ·+ τiβi
we obtain the system

α1γ = β1(1− a1)
α2γ = β1(1− a2) + β2(1− a1)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

αiγ = βi−1(1− a2) + βi(1− a1)
αi+1γ = βi(1− a2).

If γ and 1−a1 are mutually coprime then β1 = β′1γ, . . . , βi = β′iγ. Hence, t = τ1β′1+· · ·+τiβ′i. If γ = 1−a1
then we have

α1 = β
′
1(1− a1)

α2 = β
′
1(1− a2) + β′2(1− a1)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

αi = β
′
i−1(1− a2) + β′i(1− a1)

αi+1 = β
′
i(1− a2).

Consequently, t = τ1β
′
1 + · · ·+ τiβ′i. The lemma is proven.

For all nonnegative m and n, define the function

F (m,n) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

n if m = 0, n ≥ 0,
n+ 2 if m = 1, n ≥ 1,
2n+ 2 if m = 2, n ≥ 2,
F (m− 2, n) + n if m ≥ 4 is even, n ≥ 2,
F (m− 1, n) + 1 if m ≥ 3 is odd, n ≥ 2,
m+ 2 if m ≥ 2, n = 1.

This formula implies that F (m,n) = nm/2 + n + 2 for even m ≥ 4 and all n ≥ 2 and F (m,n) =
n(m+ 1)/2 + 3 for odd m ≥ 3 and all n ≥ 2.
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Theorem 1. Suppose that Am is a free abelian group of rank m, Tn is a free ZAm-module of rank n,
and Wm,n =M(Tn, Am). Then the topological dimension of Wm,n is equal to F (m,n).

Proof. We first show that the group Wm,n admits a u-sequence of length F (m,n) and thus

tdim(Wm,n) ≥ F (m,n).
1. Suppose that m = 0, i.e., Wm,n = An is a free abelian group of rank n. Then

An → An−1 → · · · → A1 → 1
is a desired u-sequence of length F (0, n). Clearly, tdim(W0,n) = n.
2. Suppose that m = 1, n ≥ 1. Then

W1,n →W1,n−1 → · · · →W1,1 → A2 → A1 → 1
is a desired u-sequence of length n + 2 = F (1, n). Prove that, in this case, the topological dimension of
W1,n is equal to n+ 2.
Let H = M(T,A) be a nonabelian u-group and α(H) = m, β(H) = n. Easily, the abelianization

Hab of H is isomorphic to T/T (1− A)× A. Since β(H) = n, the abelian group T/T (1− A) contains at
most n independent elements. Therefore, if Ar is a free abelian group which is an epimorphic image of H
then its rank r is at most n+m.
Hence, every u-sequence of maximal length begins with the sequence

W1,n →W1,n−1 → · · · →W1,p,

1 ≤ p ≤ n, and then the characteristic α decreases to zero, i.e., the sequence has the continuation
W1,p → A1+p → · · · → A1 → 1.

The length of an entire u-sequence for W1,n is equal to n+2. Since the length does not depend on p, we
have tdim(W1,n) = F (1, n) for all n ≥ 1.
3. Assume that m = 2, n ≥ 2. Denote by t1, . . . , tn a basis of Tn and denote by a1, a2 a basis of A2.

Consider the elements
τi = ti(1− a1) + ti+1(1− a2)

for i = 1, . . . , n− 1. Put

T 1 = τ1ZA2, T 2 = τ1ZA2 + τ2ZA2, . . . , Tn−1 =
n−1∑
j=1

τjZA2.

By Lemma 3, T 1, . . . , Tn−1 are isolated submodules in T . Therefore, Gi =W2,n/Ti, i = 1, . . . , n− 1, are
u-groups. We arrived at the sequence

W2,n → G1 → · · · → Gn−1

which can be extended by the u-sequence

Gn−1 → An+2 → · · · → A1 → 1.
The length of the resulting u-sequence for W2,n is equal to 2n+ 2 = F (2, n).
4. Suppose that m ≥ 4 is even, n ≥ 2. Consider the u-sequence

Wm,n → Gm,n−1 → · · · → Gm,1 →Wm−2,n → . . . ,

where α(Gm,i) = m, β(Gm,i) = i, and the groups Gm,i are constructed by analogy with the case of m = 2
on using Lemma 3. The length of this sequence is equal to n+ F (m− 2, n) = F (m,n).
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5. Suppose that m ≥ 3 is odd, n ≥ 2. Consider the u-sequence
Wm,n →Wm−1,n → . . . .

Its length is equal to 1 + F (m− 1, n) = F (m,n).
6. Assume that m ≥ 2, n = 1. The sequence

Wm,1 →Wm−1,1 → · · · →W1,1 → A2 → A1 → 1
has length m+ 2 and is of maximal length.
To finish the proof of the theorem, it suffices to validate the following bounds for the lengths of

u-sequence.
Suppose that the u-group Gm,j has the characteristics α(Gm,j) = m, β(Gm,j) = j and is a homo-

morphic image of Wm,n, 1 ≤ j ≤ n, 2 ≤ n. Then every u-sequence of Gm,j meets the following bounds
on its length:
(1) l(G0,j) = j;
(2) l(G1,j) ≤ j + 2;
(3) l(Gm,j) ≤ j +mn/2 + 2 if m ≥ 2 is even;
(4) l(Gm,j) ≤ j + (m− 1)n/2 + 3 if m ≥ 3 is odd.
The rest of the proof of the theorem establishes (1)–(4).

Case 1: m = 0 is trivial.

Case 2: m = 1. Since the topological dimension of W1,j is equal to j + 2, bound 2 is obvious.

Case 3: m = 2, n ≥ 2. The u-sequence constructed for G2,j has the beginning
G2,j → G2,j−1 → · · · → G2,p,

where 1 ≤ p ≤ j. Then the possible continuations are G2,p → G1,q or G2,p → G0,q. Consider each of the
possibilities separately.
(a) G2,p → G1,q. Since, by Proposition 9, p ≥ q, we have

l(G2,j) ≤ j − p+ 1 + q + 2 ≤ j + 3 ≤ j + n+ 2
if n ≥ 2.
(b) G2,p → G0,q. Then l(G2,j) ≤ j + n+ 2. Case 3 is analyzed completely.
Case 4: m = 3, n ≥ 2. A u-sequence for G3,j that can have maximal length, has the beginning

G3,j → G3,j−1 → · · · → G3,p,

1 ≤ p ≤ j, and one of the following continuations.
(a) G3,p → G2,q. We have

l(G3,j) = j − p+ 1 + l(G2,q) ≤ j − p+ 1 + q + n+ 2 ≤ j + n+ 3.
(b) G3,p → G1,q. In this case,

l(G3,j) = j − p+ 1 + l(G1,q) = j − p+ 1 + q + 2 ≤ j − 1 + n+ 3 < j + n+ 2.

(c) G3,p → G0,q. In this case,

l(G3,1) = j − p+ 1 + q ≤ j + q ≤ j + n+ 3.
Case 5: m ≥ 4 is even. Assume that the inequalities hold for lesser m. Every u-sequence for Gm,j

that can have maximal length has the beginning

Gm,j → Gm,j−1 → · · · → Gm,p

and then one of the following continuations.
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(a) Gm,p → Gm−1,q. Then l(Gm,j) = j − p + 1 + l(Gm−1,q). Since m − 1 is an odd less than m, we
have l(Gm−1,q) ≤ q + (m− 2)n/2 + 3. Therefore,

l(Gm,j) ≤ j − p+ 1 + q + 3 ≤ j + 2 +mn/2
for n ≥ 2.
(b) Gm,p → Gm−2,q. Since m− 2 is odd and n− 2 ≥ 2, it follows that

l(Gm,j) ≤ j − p+ 1 + l(Gm−2,q) ≤ j − 1 + 1 + q + (m− 2)n/2 + 2 ≤ j + 2 +mn/2.
(c) Gm,p → Gm−r,q, r ≥ 3, 1 ≤ q ≤ n. We have

l(Gm,j) = j − p+ 1 + l(Gm−r,q) ≤ j − p+ 1 + n+ (m− r)n/2 + 3 ≤ mn/2 + j + 2.
Case 6: m ≥ 5 is odd.
As in Case 5, a u-sequence that is a candidate to be maximal has the beginning

Gm,j → Gm,j−1 → · · · → Gm,p,

1 ≤ p ≤ j, and then one of the following continuations.
(a) Gm,p → Gm−1,q. By induction we then infer

l(Gm,j) = j − p+ 1 + l(Gm−1,q) ≤ j − p+ 1 + q + (m− 1)n/2 + 2 ≤ j + 3 + (m− 1)n/2,
since q ≤ p.
(b) Gm,p → Gm−2,q. In this case,

l(Gm,j) = j − p+ 1 + l(Gm−2,q) ≤ j − p+ 1 + l(Wm−2,n)
≤ j − p+ 1 + n+ (m− 3)n/2 + 3 ≤ j + (m− 1)n/2 + 3.

(c) Gm,p → Gm−r,q, r ≥ 3. In this case, we have
l(Gm,j) = j − p+ 1 + l(Gm−r,q) ≤ j − p+ 1 + n+ (m− 3)n/2 + 3 ≤ j + (m− 1)n/2 + 3.

The theorem is proven.

The following theorem makes it possible to calculate the nonabelian topological dimension for Wm,n.
For all nonnegative integers m and n, define the function

F0(m,n) =

⎧⎨
⎩
mn/2 + 1 for n ≥ 2 and even m,
(m+ 1)n/2 for n ≥ 1 and odd m,
m for n = 1 and every m.

Theorem 1′. Let Am be a free abelian group of rank m, let Tn be a free ZAm-module of rank n,
and let Wm,n =M(Tn, Am). Then tdim0(Wm,n) is equal to F0(m,n).

Proof is similar to the proof of Theorem 1 and is based on the following inequalities. Suppose that
a u-group Gm,j has the characteristics α(Gm,j) = m, β(Gm,j) = j Wm,n. Therefore,
(1) if m = 2l then tdim0(Gm,j) ≤ (l − 1)n+ j + 1;
(2) if m = 2l + 1 then tdim0(Gm,j) =≤ ln+ j.
The proof is finished by noting that the nonabelian u-sequences

W1,n →W1,n−1 → · · · →W1,1 → 1,
W2,n →W2,n−1 → · · · →W2,1 →W1,1 → 1,

W2l,n →W2l−1,n → . . . ,

W2l+1,n →W2l+1,n−1 → · · · →W2l+1,1 →W2l−1,n → . . .

have length F0(m,n).
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Theorem 2. The equality tdim0(G) = tdim0(Gsplit) holds for every finitely generated nonabelian
u-group G.

Proof. We first prove that tdim0(G) ≥ tdim0(Gsplit). Let

G = G0
ϕ1−→ G1

ϕ2−→ . . .
ϕn−1−→ Gn−1

ϕn−→ 1
be a sequence of nonabelian u-groups and epimorphisms. By Proposition 4, there exist homomorphisms
ψi : Gi−1,split → Gi,split and an embedding ϕi : Gi−1 → Gi such that the diagram

G0 −−−→
ϕ1

G1 −−−→
ϕ2

. . . −−−→
ϕn−1

Gn−1 −−−→
ϕn

1

⏐⏐�α0
⏐⏐�α1

⏐⏐�
⏐⏐�αn−1

⏐⏐�αn
G0,split −−−→

ψ1
G1,split −−−→

ψ2
. . . −−−→

ψn−1
Gn−1,split −−−→

ψn
1

commutes.
Put H0 = G0,split and denote by Hi the image of Hi−1 under ψi. Denote the restriction of ψi to Hi−1

by ψ̂i. We obtain the sequence of u-groups and epimorphisms

H0
ψ̂1−→ H1

ψ̂2−→ . . .
ψ̂n−1−→ Hn−1

ψ̂n−→ 1.
Show that H1, . . . , Hn−1 are nonabelian u-groups and the kernels of the epimorphisms ψ̂i are nontrivial.
Since Gαii ≤ Hi ≤ Gi,split; therefore, Hi are nonabelian u-groups. Let gi−1 be a nonidentity element

in kerϕi. Then g
αi−1
i−1 is a nonidentity element of Hi that lies in the kernel of ψ̂i.

Show that
tdim0(Gsplit) ≥ tdim0(G).

Put T0 = Fit(G), A0 = G/T0. Consider the nonabelian u-sequence

M(T0, A0)
ϕ1−→M(T1, A1)

ϕ2−→ . . .
ϕn−→M(Tn, An). (1)

Since M(Tn, An) is a nonabelian group, it contains an element hn not belonging to its Fitting radical.
Let g′0 be a preimage of hn in M(T0, A0). The element g′0 has the form(

a0 0
t0 1

)
,

where 1 �= a0 ∈ A0, t0 ∈ T0. Choose an element g0 in G so that its image in A0 be equal a0.
Consider the splittable envelope and standard embedding of G corresponding to g0, i.e.,

α : g �→
(

ḡ 0
[g, g0] 1

)
.

The epimorphisms ϕi induce epimorphisms of abelian groups ϕi : Ai−1 → Ai and module epimorphisms
ϕ̃i : Ti−1 → Ti that agree with the corresponding ϕi’s.
Consider the epimorphisms ψ1, . . . , ψn defined as follows:

ψ1 :

(
ḡ 0
[g, g0] 1

)
�→
(

ḡϕ1 0

[g, g0]
ϕ̃1 1

)
,

ψ2 :

(
ḡϕ1 0

[g, g0]
ϕ̃1 1

)
�→
(

ḡϕ1ϕ2 0

[g, g0]
ϕ̃1ϕ̃2 1

)
, etc.
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Put Gi = G
αψ1...ψi . We obtain the sequence

G = G0
ψ1−→ G1

ψ2−→ . . .
ψn−1−→ Gn−1

ψn−→ Gn.

Show that all groups in this sequence are nonabelian u-groups and all epimorphisms have nontrivial
kernels.
Indeed, suppose that tn is a nonzero element in the Fitting radical ofM(Tn, An) and t0 is its preimage

in M(T0, A0). The element t
g0−1
0 belongs to the Fitting radical of G and is nonzero. Its image is

nonzero in the Fitting radical of M(Tn, An) by the choice of g0 and the fact that M(Tn, An) is a u-group.

Furthermore, the image of g0 inM(Tn, An) has the form

(
an 0
∗ 1

)
, where an �= 1. Therefore,M(Tn, An)

is a nonabelian group.
We are left with proving that the kernels of the ψi’s are nontrivial. The epimorphisms ϕi either

decrease the value of α or leave it unchanged but, in this case, they diminish the value of β. Since the
parameters α(Gi) and α(Hi) coincide, in the first case, ψi has a nonidentity kernel. If α is not changed
under ψi then the kernel kerϕi has a nontrivial intersection with the Fitting radical of M(Ti−1, Ai−1).
Suppose that 1 �= t ∈ kerϕi. Then 1 �= tg0−1 ∈ kerψi. The theorem is proven.
Theorem 3. Let G be a free metabelian group of rank n ≥ 2. Then tdim0(G) = F0(n, n− 1).
Proof. Let G′ = T be the Fitting radical of G and put G/T = A. By Theorem 2,

tdim0(G) = tdim0(M(T,A)).

Consequently, the theorem is equivalent to the fact that

tdim0(M(T,A)) = tdim0(M(L,A)),

where L is a free ZA-module of rank n− 1.
Let

M(T,A) =M(T0, A0)
ϕ1−→M(T1, A1)

ϕ2−→ . . .
ϕl−→M(Tl, Al) (2)

be a sequence of nonabelian u-groups and epimorphisms.
Suppose that x1, . . . , xn is a basis of G.
Since M(Tl, Al) is a nonabelian group, the image of a generator a1 of A is mapped to a nonidentity

element of Al. Denote by a1 the image of x1 in A = G/T .
The Magnus embedding [5] implies that the system of elements {[x1, x2], . . . , [x1, xn]} generates a free

ZA-module and is its base. Take this submodule T as L and the embedding α(x1) as the embedding
of G into its splittable envelope M(T,A).
All elements xi, xj , xm in G satisfy the relation

[xi, xj ]
1−xm [xj , xm]1−xi [xm, xi]1−xj = 1.

Therefore, the module T and its submodule L meet the inclusion T (1− a1) ≤ L.
Each of the ϕi’s induces an epimorphism ϕ : Ai−1 → Ai of abelian groups and a module epimorphism

ϕ̃i : Ti−1 → Ti that agrees with ϕ.

Put L = L0, Li = L
ϕ̃i
i−1. Denote by ϕ̂i the restriction of ϕi to the subgroup M(Li−1, Ai−1). We

obtain the sequence

M(L,A) =M(L0, A0)
ϕ̂1−→M(L1, A1)

ϕ̂2−→ . . .
ϕ̂l−→M(Ll, Al)

of nontrivial groups, since Ti−1(1− a1) ≤ Li−1 and Ti−1 �= 0.
Show that the kernels of all ϕ̂i are nontrivial. The epimorphisms ϕi are nontrivial. Therefore, ϕi or

ϕ̃i is a nontrivial epimorphism. Consider the two cases:
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1. ker(ϕ̃i) �= 0. Suppose that 0 �= t ∈ ker(ϕ̃i). Since Ti−1(1− a1) ≤ Li−1, we have
0 �= t(1− a1) ∈ ker(ϕ̃i) ∩ Li−1 ≤ ker(ϕ̂i).

2. ker(ϕ̄i) �= 1. In this case, the rank of Ai is less than that of Ai−1. Hence, ker(ϕ̂i) �= 1.
Thus, we have proven the inequality tdim0(G) ≤ F0(n, n− 1).
Prove the reverse inequality. Let

M(F,A) =M(F0, A0)
ψ1−→M(F1, A1)

ψ2−→ . . .
ψl−→M(Fl, Al)

be a nonabelian u-sequence, where F is a free ZA-module of rank n− 1 and A is a free abelian group of
rank n.
SinceM(Fl, Al) is a nonabelian group, the image of some generator a1 ofA differs from the nonidentity

of Al. The element a1 is the image of the generator x1 under the homomorphism G→ G/T = A.
Consider the standard embedding α(x1) : G→M(T,A). Let L be the submodule in T defined in the

first part of the proof. Then L(1− a1) ≤ T (1− a1) ≤ L. Therefore, the u�-groups meet the inclusions
M(L(1− a1), A) ≤M(T (1− a1), A) ≤M(L,A);

moreover, the groups M(L,A) and M(L(1− a1), A) are isomorphic. Let
M(L,A)

ϕ1−→M(R,B)
ϕ2−→ . . .

be a nonabelian u-sequence. It induces the sequences

M(T (1− a1), A) ϕ′1−→M((T (1− a1))ϕ̃1 , B) ϕ′2−→ . . . ,

M(L(1− a1), A) ϕ′′1−→M(R(1− a1)ϕ1 , B) ϕ′′2−→ . . . .

(3)

The sequence (3) consists of nonabelian u-groups and nontrivial epimorphisms. The theorem is proven.

Using Theorems 1 and 1′ and their proofs, define the topological dimension of a free metabelian
group.

Theorem 4. Let G be a free metabelian group of rank n ≥ 2. Then

tdim(G) =

⎧⎨
⎩
F (n, n− 1)− 1 if n ≥ 4 is even,
F (n, n− 1) if n ≥ 1 is odd,
4 if n = 2.

Proof. Suppose that n ≥ 3 and α(x1) : G → M(Tn−1, An), where x̄1, . . . , x̄n is a basis of An,
ti = [xi, x1], i = 2, . . . , n, is a basis of the free module Tn−1. Then

xαi =

(
xi 0

[xi, x1] 1

)
, i = 2, . . . , n.

Suppose that n ≥ 4 is even. Consider a nonabelian u-sequence for the group Wn,n−1 =M(Tn−1, An)
that passes through all groups Wi,j for even i, 2 ≤ i ≤ n, and all 1 ≤ j ≤ n− 1. It is easy to verify that
the length of this sequence is maximal, i.e., is equal to F0(n, n− 1). Continue it with the abelianization
of W2,n−1. Thus, the abelian part of the sequence begins with the group Bn+1 = 〈x̄n−1, x̄n, t1, . . . , tn−1〉.
The image of the group G in Bn+1 coincides with Bn = 〈x̄n, t1, . . . , tn−1〉. Since F (n, n−1)−F0(n, n−1) =
n + 1, it follows that tdim(G) ≥ F (n, n − 1) − 1. Granted the inequality tdim(G) ≤ tdim0(G) + n, we
obtain the desired result.
In the case when n ≥ 3 is odd, the proof follows from two remarks. First, the definition implies

that F (n, n − 1) − F0(n, n − 1) = 2. Second, it is necessary to prove that the topological dimension
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of the subgroup G cannot exceed the dimension of the group M(Tn−1, An). This result implies that
tdim(G) = F (n, n− 1).
To check the inequality tdim(G) ≤ tdim(M(Tn−1, An)), observe that, in proving Proposition 6, for

every epimorphism ϕ : G1 → G2 of a nonabelian u-group, we constructed a homomorphism ϕ∗ : G1,split →
G2,split; moreover, kerϕ

∗ is the splitting of the kernel of ϕ (in coordinates). Furthermore, recall that the
characteristics of the groups Gi and Gi,split coincide.
This proposition extends obviously to the case when G2 is an abelian group, provided that kerϕ

includes Fit(G1). As above, denote the so-obtained homomorphism by ϕ
∗ and call it the splitting of ϕ.

Given a free metabelian group G, consider a u-sequence of maximal length tdim(G)

G = G0
ϕ1−→ G1

ϕ2−→ . . .
ϕl−→ Gl

ϕl+1−→ Ar → · · · → 1, (4)

where Ar is a free abelian group of rank r and all preceding groups are nonabelian. From this sequence,
construct the induced chain

G = G0,split
ϕ∗1−→ G1,split

ϕ∗2−→ . . .
ϕ∗
l−→ Gl,split

ϕ∗
l+1−→ At → · · · → 1. (5)

We need to prove that the rank of Ar is equal to the rank t of the free abelian group At. Put
γ = ϕ1ϕ2 . . . ϕlϕl+1, i.e., γ : G → Ar. Clearly, ker γ includes G

′ = Fit(G). Therefore, there exists
γ∗ : G0,split → Ar. Clearly, γ

∗ = ϕ∗1ϕ∗2 . . . ϕ∗l ϕ
∗
l+1, and r = t.

If n = 2 then a maximal chain of inequalities for the characteristics of u-groups is as follows:

(2, 1) > (1, 1) > (0, 2) > (0, 1) > (0, 0).

It has length 4. Since a free metabelian group of rank 2 can be mapped homomorphically onto W1,1, this
implies that tdim(G) = 4. The theorem is proven.
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