TOPOLOGICAL DIMENSIONS FOR u-GROUPS

V. N. Remeslennikov and E. I. Timoshenko

UDC 512.5

Abstract

We study some problems connected with algebraic geometry over a free metabelian group. We introduce the notions of topological dimensions which are based on the lengths of chains of irreducible closed sets, and study these dimensions.

Keywords: algebraic dimension, metabelian group, topological dimension

1. Introduction

The article is a part of a project of establishing algebraic geometry over a free metabelian group.
Let $G[X]$ be the free product of a given group G and the free group with basis $X=\left\{x_{1}, \ldots, x_{n}\right\}$. The group $G[X]$ plays the role of the ring of polynomials in algebraic geometry over G. In accordance with [1], the set of solutions to some system of equations over $G[X]$ is called an algebraic subset of the affine space G^{n}. We endow G^{n} with the Zariski topology: the algebraic subsets in G^{n} are taken as a subbasis of the system of closed sets. Dual to the category of algebraic sets is the category of coordinate groups. If B is an algebraic set then the quotient group $G[X]$ by the annihilator of B is called the coordinate group of B.

The dimension of an algebraic set B is defined in a standard way; namely, as the number n such that B admits a chain of pairwise distinct irreducible closed sets:

$$
B=B_{0} \supset B_{1} \supset \cdots \supset B_{n},
$$

and there is no chain with more terms. To a strictly decreasing chain of irreducible algebraic sets there corresponds a chain of proper epimorphisms (with nonidentity kernels) of the coordinate groups.

A group G is called a u-group if G enjoys the universal theory of a free metabelian group of rank ≥ 2. Every coordinate group is known to be a u-group $[2,3]$. Therefore, it is interesting to study the lengths of chains of epimorphisms for u-groups. Depending on whether the chain contains abelian groups or not, we define two topological dimensions for u-groups. Our article is devoted to studying these dimensions.

Theorem 1 of this article calculates the topological dimension for the group $M\left(T_{n}, A_{m}\right)$ isomorphic to the discrete wreath product of free abelian groups of ranks n and m. Modifying the proof of Theorem 1, we find the nonabelian topological dimension of $M\left(T_{n}, A_{m}\right)$. We introduce the class U_{λ} of splittable u-groups and prove that, for every nonabelian u-group G, there exists an embedding in the splittable envelope $G_{\text {split }} \in U_{\lambda}$. It turns out that the topological dimensions of G and $G_{\text {split }}$ are closely connected. Moreover, the nonabelian topological dimensions of these groups coincide (Theorem 2). This enables us to calculate the topological dimensions of groups by considering their splittable envelopes. Along these lines, we find the topological dimensions of a free metabelian group (Theorems 3 and 4).

2. Splittable \boldsymbol{u}-Groups

2.1. \boldsymbol{u}-Groups. Suppose that G is a metabelian group, i.e., G has an abelian normal subgroup M such that $\bar{G}=G / M$ is an abelian group. The elements of G act on M by conjugation: $m^{g}=g^{-1} m g$,

[^0]Omsk; Novosibirsk. Translated from Sibirskiŭ Matematicheskǐ Zhurnal, Vol. 47, No. 2, pp. 414-430, March-April, 2006. Original article submitted February 7, 2005.
$m \in M, g \in G$. Using this action, we endow M with the structure of a right $\mathbf{Z} \bar{G}$-module, where $\mathbf{Z} \bar{G}$ is the integral group ring of \bar{G}.

Denote by $\operatorname{Fit}(G)$ the Fitting radical of G, i.e., the subgroup generated by all nilpotent normal subgroups of G.

Definition. A torsion-free metabelian group G is called a u-group if G meets the following conditions:
(1) $\operatorname{Fit}(G)$ is an abelian group;
(2) $A=G / \operatorname{Fit}(G)$ is a torsion-free abelian group;
(3) $\operatorname{Fit}(G)$ is torsion-free as a $\mathbf{Z} A$-module.

The class of u-groups can be defined by universal axioms [3,4]. Necessary information on u-groups and their relationship with algebraic geometry over groups can be found in [2-4].

The definition implies that a nonabelian u-group has trivial center.
In what follows, we refer to
Proposition 1 [2]. Let G be a nonabelian u-group and let N be an isolated ideal in Fit (G). Then the quotient group G / N is a u-group.

Some invariants $\alpha(G)$ and $\beta(G)$ were defined for every u-group G in [2]. Recall that $\alpha(G)$ is equal to the rank of the free abelian group $A=G / \operatorname{Fit}(G)$. Let n be the minimal rank of a free $\mathbf{Z} A$-module that includes $\operatorname{Fit}(G)$. Then $\beta(G)=n$. Equivalently, we can define $\beta(G)$ as the maximal cardinality of a system of elements in $\operatorname{Fit}(G)$ linearly independent over $\mathbf{Z} A$.

The following proposition collects some assertions in [2]:
Proposition 2. If G_{1} and G_{2} are finitely generated u-groups and $\varphi: G_{1} \rightarrow G_{2}$ is an epimorphism then
(1) $\alpha\left(G_{2}\right) \leq \alpha\left(G_{1}\right)$;
(2) if $\alpha\left(G_{2}\right)=\alpha\left(G_{1}\right)$ then $\beta\left(G_{2}\right) \leq \beta\left(G_{1}\right)$; if $\operatorname{ker} \varphi \neq 1$ and $\alpha\left(G_{2}\right)=\alpha\left(G_{1}\right)$ then $\beta\left(G_{2}\right)<\beta\left(G_{1}\right)$;
(3) if G is a nonabelian u-group admitting a system of n generators then $\beta(G) \leq n-1$.
2.2. The class of groups \boldsymbol{U}_{λ}. Denote by U_{λ} the class of nonabelian u-groups G with the radical Fit (G) splittable in G. We call these groups u_{λ}-groups.

Let A be a group and let T be a $\mathbf{Z} A$-module. Denote by $M(T, A)$ the group of matrices

$$
M(T, A)=\left\{\left(\begin{array}{ll}
a & 0 \\
t & 1
\end{array}\right), a \in A, t \in T\right\} .
$$

Identify the group A with the matrix group $\left(\begin{array}{cc}A & 0 \\ 0 & 1\end{array}\right)$ and the module T, with the module $\left(\begin{array}{cc}1 & 0 \\ T & 1\end{array}\right)$.
If T is torsion-free then the Fitting radical of $M(T, A)$ coincides with the subgroup \widetilde{T} and the Fitting quotient group is isomorphic to A.

Lemma 1. Suppose that $G=M(T, A)$ and $\bar{G}=M(\bar{T}, \bar{A})$ and let $\varphi: G \rightarrow \bar{G}$ be an epimorphism. If G and \bar{G} are u-groups then
(1) $\varphi(T)=\bar{T}$,
(2) $\bar{G} \cong M(\bar{T}, \varphi(A))$.

Proof. (1) Since the epimorphism φ takes the Fitting radical into the Fitting radical, $\varphi(T) \leq \bar{T}$. Suppose that $\bar{\tau} \in \bar{T}$ and $g=\left(\begin{array}{cc}a & 0 \\ t & 1\end{array}\right)$ is the preimage of $\bar{\tau}$ in G. Then the image of the element $\left(\begin{array}{cc}a & 0 \\ 0 & 1\end{array}\right)$ is in \bar{T}. The element $\varphi(a)$ commutes with the subgroup $\varphi(A)$. On the other hand, $\varphi(a)$ belongs to \bar{T} and, hence, commutes with $\varphi(T)$. Therefore, $\varphi(a)=1$ and $\bar{\tau}$ is the image of $\left(\begin{array}{ll}1 & 0 \\ t & 1\end{array}\right)$.
(2) Since $\varphi(T)=\bar{T}$, it suffices to prove that $\bar{T} \cap \varphi(A)=1$. Assume that $\bar{t} \in \bar{T}$ and $\bar{t}=\varphi(a), a \in A$. Then

$$
[\varphi(a), \varphi(A)]=[\varphi(a), \bar{T}]=1,
$$

i.e., $\varphi(a)=1$. The lemma is proven.

Proposition 3. The following are equivalent for a nonabelian u-group G :
(1) G is a u_{λ}-group;
(2) $G \cong M(T, A)$ for some torsion-free abelian group A and some torsion-free $\mathbf{Z} A$-module T;
(3) G is a quotient of $M(F, A)$, where A is a torsion-free abelian group and F is a free $\mathbf{Z} A$-module.

Proof. (1) \Rightarrow (2). Put $T=\operatorname{Fit}(G), A=G / T$. Since the subgroup T is splittable in G, it follows that $G \cong M(T, A)$.
$(2) \Rightarrow(3)$. Suppose that F is a free $\mathbf{Z} A$-module and $F / N \cong T$. Then G is a homomorphic image of $M(F, A)$ and the kernel of the homomorphism coincides with the subgroup $\left(\begin{array}{cc}1 & 0 \\ N & 1\end{array}\right)$.
$(3) \Rightarrow(1)$. Assume that $\varphi: M(F, A) \rightarrow G$ and $R=\operatorname{ker} \varphi$. Prove that

$$
R=\left(\begin{array}{ll}
A_{1} & 0 \\
R_{1} & 1
\end{array}\right)
$$

for some $\mathbf{Z} A$-submodule R_{1} in F and some abelian subgroup A_{1} in A. Since G is a u-group, this will finish the proof.

Let $g=\left(\begin{array}{cc}a & 0 \\ t & 1\end{array}\right)$ be an element in R. Prove that $\left(\begin{array}{cc}a & 0 \\ 0 & 1\end{array}\right)$ and $\left(\begin{array}{cc}1 & 0 \\ t & 1\end{array}\right)$ also belong to R.
Indeed, there exists an element c in F that does not belong to R. Otherwise, G is abelian. Since c belongs to the Fitting radical of $M(F, A)$, its image $\varphi(c)$ belongs to $\operatorname{Fit}(G)$ and $\varphi(c) \neq 1$. The commutator $[c, g]=c^{a-1}$ lies in R. Therefore,

$$
\varphi(c)^{\varphi(a)-1}=1 .
$$

Since $\operatorname{Fit}(G)$ is torsion-free, $\varphi(a)=1$. Hence, $a, t \in R$. The proposition is proven.
Since R is a normal subgroup in $M(F, A)$, it follows that $R_{1} \geq F\left(A_{1}-1\right)$ and, thus,

$$
G \cong\left(\begin{array}{ll}
A / A_{1} & 0 \\
F / R_{1} & 1
\end{array}\right) .
$$

We will need the following lemma which bounds $\beta(G)$ for finitely generated groups in U_{λ}.
Lemma 2. Assume that a u-group G is a homomorphic image of the group $M(F, A)$, where F is a free $\mathbf{Z} A$-module of rank n. Then $\beta(G) \leq n$.

Proof. Lemma 1 and Proposition 3 imply that $G=M(T, B)$, where the $\mathbf{Z} B$-module T is a homomorphic image of the $\mathbf{Z} A$-module F; moreover, the module homomorphism agrees with the group homomorphism $A \rightarrow B$. Consequently, T is generated by at most n elements. Since $\beta(G)$ is the cardinality of a maximal linear independent system of elements in T, it follows that $\beta(G) \leq n$.
2.3. Splittable envelopes and standard embeddings. The following proposition makes it possible to embed an arbitrary u-group in a group of class U_{λ} having the same α and β as the initial group.

Proposition 4. Suppose that G is a nonabelian u-group; $T=\operatorname{Fit}(G) ; \bar{G}=G / T ; \bar{g}$ is the image of an element $g \in G$ under the natural homomorphism $G \rightarrow \bar{G} ; n \geq 1 ; h_{1}, \ldots, h_{n}$ are fixed elements in G. Assume that $\bar{h}_{1} \neq 1$ and \bar{h}_{1} is different from $\bar{h}_{2}, \ldots, \bar{h}_{n}$. Then the mapping

$$
g \mapsto\left(\begin{array}{cc}
\bar{g} & 0 \\
\prod_{i=1}^{n}\left[g, h_{i}\right] & 1
\end{array}\right)
$$

is an embedding of G in the matrix group $M(T, \bar{G})$. Moreover, if δ is the element $\bar{h}_{1}+\cdots+\bar{h}_{n}-n$ in $\mathbf{Z} \bar{G}$ then

$$
T^{\alpha}=\left(\begin{array}{cc}
1 & 0 \\
T \cdot \delta & 1
\end{array}\right)
$$

Proof. For $j=1,2$, we have

$$
g_{j}^{\alpha}=\left(\begin{array}{cc}
\bar{g}_{j} & 0 \\
\prod_{i=1}^{n}\left[g_{j}, h_{i}\right] & 1
\end{array}\right) .
$$

Then

$$
\left(g_{1} g_{2}\right)^{\alpha}=\left(\begin{array}{cc}
\bar{g}_{1} \bar{g}_{2} & 0 \\
\prod_{i=1}^{n}\left[g_{1} g_{2}, h_{i}\right] & 1
\end{array}\right)=\left(\begin{array}{cc}
\bar{g}_{1} \bar{g}_{2} & 0 \\
\prod_{i=1}^{n}\left[g_{1}, h_{i}\right]^{g_{2}}\left[g_{2}, h_{i}\right] & 1
\end{array}\right) .
$$

Since, in the module notation,

$$
\left[g_{1}, h_{i}\right]^{g_{2}}\left[g_{2}, h_{i}\right]=\left[g_{1}, h_{i}\right] \cdot \bar{g}_{2}+\left[g_{2}, h_{i}\right],
$$

it follows that $\left(g_{1} g_{2}\right)^{\alpha}=g_{1}^{\alpha} g_{2}^{\alpha}$.
Prove that $\operatorname{ker} \varphi=1$. Take $g \in \operatorname{ker} \varphi$. Then g belongs to T. Consequently,

$$
\prod_{i=1}^{n}\left[g, h_{i}\right]=g^{\bar{h}_{1}+\cdots+\bar{h}_{n}-n}
$$

By assumption, the element $\bar{h}_{1}+\cdots+\bar{h}_{n}-n$ is nonzero. Since the $\mathbf{Z} \bar{G}$-module T is torsion-free, $g=1$. The proposition is proven.

Let G be a u-group. We call a group H of class U_{λ} a splittable envelope for G if the groups $\bar{H}=H / \operatorname{Fit}(H)$ and $\bar{G}=G / \operatorname{Fit}(G)$ are isomorphic and the $\mathbf{Z} \bar{G}$-module $\operatorname{Fit}(G)$ is isomorphic to the $\mathbf{Z} \bar{H}$ module $\operatorname{Fit}(H)$. If A is an abelian group then a splittable envelope of A is by definition A. Proposition 4 enables us to construct a splittable envelope for an arbitrary u-group.

We call the group $M(T, \bar{G})$ and the embedding $G \xrightarrow{\alpha} M(T, \bar{G})$ constructed in Proposition 4 the standard splittable envelope and standard embedding corresponding to h_{1}, \ldots, h_{n}. Denote them by $G_{\text {split }}\left(h_{1}, \ldots, h_{n}\right)$ and $\alpha\left(h_{1}, \ldots, h_{n}\right)$. If the elements h_{1}, \ldots, h_{n} are predefined then we write $G_{\text {split }}$ and α.

It is easy to prove
Proposition 5 (Occurrence Criterion). Let $\alpha: G \rightarrow G_{\text {split }}$ be the standard embedding of a nonabelian u-group G in the standard splittable envelope corresponding to g_{1}, \ldots, g_{n}. Put $T=\operatorname{Fit}(G)$, $\bar{G}=G / T, \delta=\bar{g}_{1}+\cdots+\bar{g}_{n}-n$. An element $\left(\begin{array}{cc}a & 0 \\ t & 1\end{array}\right), a \in \bar{G}, t \in T$, of $G_{\text {split }}$ lies in G^{α} if and only if
(1) there exists $g \in G$ such that $\bar{g}=a$;
(2) the element $t-\prod_{i=1}^{n}\left[g, g_{i}\right]$ of the $\mathbf{Z} \bar{G}$-module T divides by δ.

Proof immediately ensues from the fact that $\prod_{i=1}^{n}\left[g, g_{i}\right]=g^{\delta}$ for $g \in T$.
Proposition 6. Let $G_{1} \xrightarrow{\varphi} G_{2}$ be an epimorphism of nonabelian u-groups and let g be an element of G_{1} with the property that g^{φ} does not belong to the subgroup Fit $\left(G_{2}\right), G_{1, \text { split }}=G_{1, \text { split }}(g), G_{2, \text { split }}=$ $G_{2, \text { split }}\left(g^{\varphi}\right)$. Then there exists a homomorphism

$$
\psi: G_{1, \text { split }} \rightarrow G_{2, \text { split }}
$$

such that the diagram

commutes.

Proof. Suppose that $T_{i}=\operatorname{Fit}\left(G_{i}\right), \bar{G}_{i}=G_{i} / T_{i}, f \in G_{1}, t \in T_{1}$. Define a mapping $\psi: M\left(T_{1}, \bar{G}_{1}\right) \rightarrow$ $M\left(T_{2}, \bar{G}_{2}\right)$ by the rule

$$
\left(\begin{array}{ll}
\bar{f} & 0 \\
t & 1
\end{array}\right) \stackrel{\psi}{\mapsto}\left(\begin{array}{ll}
\bar{f}^{\bar{\varphi}} & 0 \\
t^{\varphi} & 1
\end{array}\right),
$$

where $\bar{\varphi}: \bar{G}_{1} \rightarrow \bar{G}_{2}$ is the induced homomorphism.
It is easy to check that ψ is a homomorphism and the diagram commutes. The assertion is proven.
We can show that the so-constructed homomorphism is not necessarily an epimorphism.
2.4. Localization of groups of class \boldsymbol{U}_{λ}. Let $G=M(T, A)$ be a group of class $U_{\lambda}, R=\mathbf{Z} A$. Choose a multiplicatively closed set S with unity in the ring R. Standardly construct the quotient ring $S^{-1} R$ with respect to S and the $S^{-1} R$-module $S^{-1} T$. Note that R is embedded in $S^{-1} R$ and the R module T is embedded in the $S^{-1} R$-module $S^{-1} T$. Moreover, we obtain an embedding of G into the group $G_{s}=M\left(S^{-1} T, A\right)$ of class U_{λ}, defined as follows:

$$
\left(\begin{array}{ll}
a & 0 \\
t & 1
\end{array}\right) \mapsto\left(\begin{array}{cc}
a / 1 & 0 \\
t / 1 & 1
\end{array}\right)
$$

Definition. The group G_{s} is called the localization of the u_{λ}-group G with respect to S.
Proposition 7. Suppose that $G=M(T, A)$ and $\bar{G}=M(\bar{T}, \bar{A})$ are groups of class U_{λ} and $\varphi: G \rightarrow \bar{G}$ is an epimorphism and $\varphi(A)=\bar{A}$. Put $R=\mathbf{Z} A, \bar{R}=\mathbf{Z} \bar{A}$ and let $\psi: R \rightarrow \bar{R}$ be the ring homomorphism induced mapping $\varphi: A \rightarrow \bar{A}$. Let S be a multiplicatively closed subset in R and let \bar{S} be its image in \bar{R}. If the intersection $S \cap \operatorname{ker} \psi$ is empty then the epimorphism φ can be extended to a group epimorphism

$$
\varphi_{s}: G_{s} \rightarrow \bar{G}_{\bar{s}}
$$

of the localizations of these groups with respect to S and \bar{S}.
Proof. Consider the mapping of groups $\varphi_{s}: G_{s} \rightarrow \bar{G}_{\bar{s}}$ defined as

$$
\varphi_{s}:\left(\begin{array}{cc}
a & 0 \\
t / s & 1
\end{array}\right) \mapsto\left(\begin{array}{cc}
a^{\varphi} & 0 \\
t^{\varphi} / s^{\psi} & 1
\end{array}\right)
$$

If $t_{1} / s_{1}=t_{2} / s_{2}$ then

$$
\left(\begin{array}{cc}
a & 0 \\
t_{1} / s_{1} & 1
\end{array}\right)^{\varphi_{s}}=\left(\begin{array}{cc}
a & 0 \\
t_{2} / s_{2} & 1
\end{array}\right)^{\varphi_{s}}
$$

i.e., φ_{s} is well defined. Check that φ_{s} is a homomorphism. Suppose that

$$
\left(\begin{array}{cc}
a_{i} & 0 \\
t_{i} / s_{i} & 1
\end{array}\right)^{\varphi_{s}}=\left(\begin{array}{cc}
a_{i}^{\varphi} & 0 \\
t_{i}^{\varphi} / s_{i}^{\psi} & 1
\end{array}\right)
$$

$i=1,2$. We have

$$
\left(\begin{array}{cc}
a_{1} & 0 \\
t_{1} / s_{1} & 1
\end{array}\right)\left(\begin{array}{cc}
a_{2} & 0 \\
t_{2} / s_{2} & 1
\end{array}\right)=\left(\begin{array}{cc}
a_{1} a_{2} & 0 \\
\left(t_{1} \cdot a_{2} s_{2}+t_{2} s_{1}\right) / s_{1} s_{2} & 1
\end{array}\right)
$$

Then

$$
\begin{aligned}
&\left(\begin{array}{cc}
a_{1} a_{2} & 0 \\
\left(t_{1} \cdot a_{2} s_{2}+t_{2} s_{1}\right) / s_{1} s_{2} & 1
\end{array}\right)^{\varphi_{s}}=\left(\begin{array}{cc}
a_{1}^{\varphi} a_{2}^{\varphi} & 0 \\
\left(t_{1} \cdot a_{2} s_{2}+t_{2} s_{1}\right)^{\varphi} / s_{1}^{\psi} s_{2}^{\psi} & 1
\end{array}\right) \\
&=\left(\begin{array}{cc}
a_{1}^{\varphi} a_{2}^{\varphi} & 0 \\
\left(t_{1}^{\varphi} \cdot\left(a_{2} s_{2}\right)^{\psi}+t_{2}^{\varphi} s_{1}^{\psi}\right) / s_{1}^{\psi} s_{2}^{\psi} & 1
\end{array}\right)=\left(\begin{array}{cc}
a_{1}^{\varphi} & 0 \\
t_{1}^{\varphi} / s_{1}^{\psi} & 1
\end{array}\right)\left(\begin{array}{cc}
a_{2}^{\varphi} & 0 \\
t_{2}^{\varphi} / s_{2}^{\psi} & 1
\end{array}\right) .
\end{aligned}
$$

The proposition is proven.

Proposition 8. Let G_{s} be the localization of a $u_{\lambda-g r o u p ~} G=M(T, A)$ with respect to S. If S does not contain the zero element then $\beta(G)=\beta\left(G_{s}\right)$.

The following proposition is useful in calculating the topological dimensions of splittable u-groups:
Proposition 9. Let $\varphi: G \rightarrow \bar{G}$ be an epimorphism of finitely generated groups of class U_{λ}. If $\alpha(\bar{G})=\alpha(G)-1$ then $\beta(\bar{G}) \leq \beta(G)$.

Proof. Suppose that $G=M(T, A), \bar{G}=M(\bar{T}, \bar{A})$, where A and \bar{A} are free abelian groups of finite ranks, $R=\mathbf{Z} A, \bar{R}=\mathbf{Z} \bar{A}$, and T and \bar{T} are finitely generated torsion-free modules over R and \bar{R} respectively.

Denote by φ_{A} the restriction of φ to the subgroup $A=\left(\begin{array}{cc}A & 0 \\ 0 & 1\end{array}\right)$. By Lemma 1, we may assume that $\varphi_{A}(A)=\bar{A}$. Again by Lemma $1, \varphi(T)=\left(\begin{array}{cc}1 & 0 \\ \bar{T} & 1\end{array}\right)=\bar{T}$.

Let a_{1}, \ldots, a_{m} be a basis of $A, \varphi_{A}\left(a_{j}\right)=\bar{a}_{j}, j=2, \ldots, m, \varphi_{A}\left(a_{1}\right)=1$, and the elements $\bar{a}_{2}, \ldots, \bar{a}_{m}$ form a basis of \bar{A}.

Take the set of nonzero elements of the integral group ring $\mathbf{Z}\left\langle a_{2}, \ldots, a_{m}\right\rangle$ as a multiplicative set S.
Extend the homomorphism $\varphi_{A}: A \rightarrow \bar{A}$ to a ring homomorphism $\widetilde{\varphi}_{A}: R \rightarrow \bar{R}$. Since $\operatorname{ker} \widetilde{\varphi}_{A} \cap S$ is empty, by Proposition 7 the epimorphism φ can be extended to an epimorphism of the corresponding localizations:

$$
\varphi_{S}: G_{S} \rightarrow \bar{G}_{\bar{S}},
$$

where $\bar{S}=\varphi_{A}(S)$. Moreover, $\varphi_{S}\left(S^{-1} T\right)=\bar{S}^{-1} \bar{T}$. By Proposition 8 ,

$$
\beta(G)=\beta\left(G_{S}\right), \quad \beta(\bar{G})=\beta\left(\bar{G}_{\bar{S}}\right) .
$$

The quotient ring $\bar{S}^{-1} \bar{R}$ is a field. Denote it by P. Then $S^{-1} R=P\left\langle a_{1}\right\rangle$ is the ring of Laurent polynomials in a_{1} over the field P. Hence, $S^{-1} R$ is a principal ideal domain. In this case, the torsion-free module $S^{-1} T$ is free over $S^{-1} R$.

Denote by $\beta(T)$ the maximal number of linearly independent elements in the R-module T. We infer

$$
\beta(\bar{G})=\beta(\bar{T})=\beta\left(\bar{S}^{-1} \bar{T}\right)=\beta\left(\varphi_{S}\left(S^{-1} T\right)\right)
$$

But $S^{-1} T$ is a free $S^{-1} R$-module. Therefore,

$$
\beta\left(\varphi_{S}\left(S^{-1} T\right)\right) \leq \beta\left(S^{-1} T\right)=\beta(G)
$$

The proposition is proven.

3. Topological Dimension for \boldsymbol{u}-Groups

Definition. Let G be a finitely generated u-group. Consider the sequence of u-groups G_{i} and epimorphisms φ_{j} with nontrivial kernels $\operatorname{ker}\left(\varphi_{j}\right)$:

$$
G=G_{0} \xrightarrow{\varphi_{1}} G_{1} \xrightarrow{\varphi_{2}} \ldots \xrightarrow{\varphi_{l-1}} G_{l-1} \xrightarrow{\varphi_{l}} 1 .
$$

Call such a sequence a u-sequence of length $l=l(G)$.
From Proposition 3 it follows that, for a u_{λ}-group G, all nonabelian terms of the sequence are u_{λ}-groups.

Definition. The maximal length $l(G)$ of all u-sequences for a finitely generated u-group G is called its topological dimension and denoted by $\operatorname{tdim}(G)$. If we restrict exposition only to the u-sequences whose all terms are nonabelian u-groups then we arrive at the notions of a nonabelian u-sequence and the nonabelian topological dimension which we denote by $\operatorname{tdim}_{0}(G)$.

We put the topological dimensions of the trivial group to be zero.

From the standpoint of applications to algebraic geometry over a group G, the nonabelian topological dimension is more substantial.

Denote by $r_{0}(G)$ the number of infinite cyclic groups in the decomposition of an abelian group $G /[G, G]$ into a product of cyclic groups. It is easy to establish the following inequality:

$$
\operatorname{tdim}(G) \leq \operatorname{tdim}_{0}(G)+r_{0}(G)
$$

Lemma 3. Let A be a free abelian group with basis a_{1}, \ldots, a_{m} and let T be a free $\mathbf{Z} A$-module with basis $t_{1}, \ldots, t_{n}, n \geq 2$. For $i=1, \ldots, n-1$, we put

$$
\tau_{i}=t_{i}\left(1-a_{1}\right)+t_{i+1}\left(1-a_{2}\right) .
$$

Let T_{i} be the submodule in T generated by $\tau_{1}, \ldots, \tau_{i}$. Then T_{i} are isolated submodules in T.
Proof. Assume that some $t \in T$ and $0 \neq \gamma \in \mathbf{Z} A$ meet the conditions $t \notin T_{i}$ but $t \gamma \in T_{i}$. We may assume that γ is a nondecomposable element of the integral domain $\mathbf{Z} A$. Suppose that

$$
t=t_{1} \alpha_{1}+\cdots+t_{i+1} \alpha_{i+1},
$$

where $\alpha_{1}, \ldots, \alpha_{i+1} \in \mathbf{Z} A$. From the equality

$$
t \gamma=\tau_{1} \beta_{1}+\cdots+\tau_{i} \beta_{i}
$$

we obtain the system

$$
\begin{aligned}
& \alpha_{1} \gamma=\beta_{1}\left(1-a_{1}\right) \\
& \alpha_{2} \gamma=\beta_{1}\left(1-a_{2}\right)+\beta_{2}\left(1-a_{1}\right) \\
& \ldots \ldots \ldots \ldots \ldots \ldots \cdots \cdots \cdots \cdots \cdots \\
& \alpha_{i} \gamma=\beta_{i-1}\left(1-a_{2}\right)+\beta_{i}\left(1-a_{1}\right) \\
& \alpha_{i+1} \gamma=\beta_{i}\left(1-a_{2}\right) .
\end{aligned}
$$

If γ and $1-a_{1}$ are mutually coprime then $\beta_{1}=\beta_{1}^{\prime} \gamma, \ldots, \beta_{i}=\beta_{i}^{\prime} \gamma$. Hence, $t=\tau_{1} \beta_{1}^{\prime}+\cdots+\tau_{i} \beta_{i}^{\prime}$. If $\gamma=1-a_{1}$ then we have

$$
\begin{aligned}
\alpha_{1} & =\beta_{1}^{\prime}\left(1-a_{1}\right) \\
\alpha_{2} & =\beta_{1}^{\prime}\left(1-a_{2}\right)+\beta_{2}^{\prime}\left(1-a_{1}\right) \\
\ldots & \ldots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \\
\alpha_{i} & =\beta_{i-1}^{\prime}\left(1-a_{2}\right)+\beta_{i}^{\prime}\left(1-a_{1}\right) \\
\alpha_{i+1} & =\beta_{i}^{\prime}\left(1-a_{2}\right) .
\end{aligned}
$$

Consequently, $t=\tau_{1} \beta_{1}^{\prime}+\cdots+\tau_{i} \beta_{i}^{\prime}$. The lemma is proven.
For all nonnegative m and n, define the function

$$
F(m, n)= \begin{cases}n & \text { if } m=0, n \geq 0 \\ n+2 & \text { if } m=1, n \geq 1, \\ 2 n+2 & \text { if } m=2, n \geq 2, \\ F(m-2, n)+n & \text { if } m \geq 4 \text { is even, } n \geq 2 \\ F(m-1, n)+1 & \text { if } m \geq 3 \text { is odd, } n \geq 2 \\ m+2 & \text { if } m \geq 2, n=1\end{cases}
$$

This formula implies that $F(m, n)=n m / 2+n+2$ for even $m \geq 4$ and all $n \geq 2$ and $F(m, n)=$ $n(m+1) / 2+3$ for odd $m \geq 3$ and all $n \geq 2$.

Theorem 1. Suppose that A_{m} is a free abelian group of rank m, T_{n} is a free $\mathbf{Z} A_{m}$-module of rank n, and $W_{m, n}=M\left(T_{n}, A_{m}\right)$. Then the topological dimension of $W_{m, n}$ is equal to $F(m, n)$.

Proof. We first show that the group $W_{m, n}$ admits a u-sequence of length $F(m, n)$ and thus

$$
\operatorname{tdim}\left(W_{m, n}\right) \geq F(m, n)
$$

1. Suppose that $m=0$, i.e., $W_{m, n}=A_{n}$ is a free abelian group of rank n. Then

$$
A_{n} \rightarrow A_{n-1} \rightarrow \cdots \rightarrow A_{1} \rightarrow 1
$$

is a desired u-sequence of length $F(0, n)$. Clearly, $\operatorname{tdim}\left(W_{0, n}\right)=n$.
2 . Suppose that $m=1, n \geq 1$. Then

$$
W_{1, n} \rightarrow W_{1, n-1} \rightarrow \cdots \rightarrow W_{1,1} \rightarrow A_{2} \rightarrow A_{1} \rightarrow 1
$$

is a desired u-sequence of length $n+2=F(1, n)$. Prove that, in this case, the topological dimension of $W_{1, n}$ is equal to $n+2$.

Let $H=M(T, A)$ be a nonabelian u-group and $\alpha(H)=m, \beta(H)=n$. Easily, the abelianization $H_{a b}$ of H is isomorphic to $T / T(1-A) \times A$. Since $\beta(H)=n$, the abelian group $T / T(1-A)$ contains at most n independent elements. Therefore, if A_{r} is a free abelian group which is an epimorphic image of H then its rank r is at most $n+m$.

Hence, every u-sequence of maximal length begins with the sequence

$$
W_{1, n} \rightarrow W_{1, n-1} \rightarrow \cdots \rightarrow W_{1, p}
$$

$1 \leq p \leq n$, and then the characteristic α decreases to zero, i.e., the sequence has the continuation

$$
W_{1, p} \rightarrow A_{1+p} \rightarrow \cdots \rightarrow A_{1} \rightarrow 1 .
$$

The length of an entire u-sequence for $W_{1, n}$ is equal to $n+2$. Since the length does not depend on p, we have $\operatorname{tdim}\left(W_{1, n}\right)=F(1, n)$ for all $n \geq 1$.
3. Assume that $m=2, n \geq 2$. Denote by t_{1}, \ldots, t_{n} a basis of T_{n} and denote by a_{1}, a_{2} a basis of A_{2}. Consider the elements

$$
\tau_{i}=t_{i}\left(1-a_{1}\right)+t_{i+1}\left(1-a_{2}\right)
$$

for $i=1, \ldots, n-1$. Put

$$
\bar{T}_{1}=\tau_{1} \mathbf{Z} A_{2}, \bar{T}_{2}=\tau_{1} \mathbf{Z} A_{2}+\tau_{2} \mathbf{Z} A_{2}, \ldots, \bar{T}_{n-1}=\sum_{j=1}^{n-1} \tau_{j} \mathbf{Z} A_{2}
$$

By Lemma $3, \bar{T}_{1}, \ldots, \bar{T}_{n-1}$ are isolated submodules in T. Therefore, $G_{i}=W_{2, n} / T_{i}, i=1, \ldots, n-1$, are u-groups. We arrived at the sequence

$$
W_{2, n} \rightarrow G_{1} \rightarrow \cdots \rightarrow G_{n-1}
$$

which can be extended by the u-sequence

$$
G_{n-1} \rightarrow A_{n+2} \rightarrow \cdots \rightarrow A_{1} \rightarrow 1 .
$$

The length of the resulting u-sequence for $W_{2, n}$ is equal to $2 n+2=F(2, n)$.
4 . Suppose that $m \geq 4$ is even, $n \geq 2$. Consider the u-sequence

$$
W_{m, n} \rightarrow G_{m, n-1} \rightarrow \cdots \rightarrow G_{m, 1} \rightarrow W_{m-2, n} \rightarrow \ldots,
$$

where $\alpha\left(G_{m, i}\right)=m, \beta\left(G_{m, i}\right)=i$, and the groups $G_{m, i}$ are constructed by analogy with the case of $m=2$ on using Lemma 3. The length of this sequence is equal to $n+F(m-2, n)=F(m, n)$.
5. Suppose that $m \geq 3$ is odd, $n \geq 2$. Consider the u-sequence

$$
W_{m, n} \rightarrow W_{m-1, n} \rightarrow \ldots
$$

Its length is equal to $1+F(m-1, n)=F(m, n)$.
6 . Assume that $m \geq 2, n=1$. The sequence

$$
W_{m, 1} \rightarrow W_{m-1,1} \rightarrow \cdots \rightarrow W_{1,1} \rightarrow A_{2} \rightarrow A_{1} \rightarrow 1
$$

has length $m+2$ and is of maximal length.
To finish the proof of the theorem, it suffices to validate the following bounds for the lengths of u-sequence.

Suppose that the u-group $G_{m, j}$ has the characteristics $\alpha\left(G_{m, j}\right)=m, \beta\left(G_{m, j}\right)=j$ and is a homomorphic image of $W_{m, n}, 1 \leq j \leq n, 2 \leq n$. Then every u-sequence of $G_{m, j}$ meets the following bounds on its length:
(1) $l\left(G_{0, j}\right)=j$;
(2) $l\left(G_{1, j}\right) \leq j+2$;
(3) $l\left(G_{m, j}\right) \leq j+m n / 2+2$ if $m \geq 2$ is even;
(4) $l\left(G_{m, j}\right) \leq j+(m-1) n / 2+3$ if $m \geq 3$ is odd.

The rest of the proof of the theorem establishes (1)-(4).
CASE 1: $m=0$ is trivial.
CASE 2: $m=1$. Since the topological dimension of $W_{1, j}$ is equal to $j+2$, bound 2 is obvious.
CASE 3: $m=2, n \geq 2$. The u-sequence constructed for $G_{2, j}$ has the beginning

$$
G_{2, j} \rightarrow G_{2, j-1} \rightarrow \cdots \rightarrow G_{2, p}
$$

where $1 \leq p \leq j$. Then the possible continuations are $G_{2, p} \rightarrow G_{1, q}$ or $G_{2, p} \rightarrow G_{0, q}$. Consider each of the possibilities separately.
(a) $G_{2, p} \rightarrow G_{1, q}$. Since, by Proposition $9, p \geq q$, we have

$$
l\left(G_{2, j}\right) \leq j-p+1+q+2 \leq j+3 \leq j+n+2
$$

if $n \geq 2$.
(b) $G_{2, p} \rightarrow G_{0, q}$. Then $l\left(G_{2, j}\right) \leq j+n+2$. Case 3 is analyzed completely.

CASE 4: $m=3, n \geq 2$. A u-sequence for $G_{3, j}$ that can have maximal length, has the beginning

$$
G_{3, j} \rightarrow G_{3, j-1} \rightarrow \cdots \rightarrow G_{3, p}
$$

$1 \leq p \leq j$, and one of the following continuations.
(a) $G_{3, p} \rightarrow G_{2, q}$. We have

$$
l\left(G_{3, j}\right)=j-p+1+l\left(G_{2, q}\right) \leq j-p+1+q+n+2 \leq j+n+3
$$

(b) $G_{3, p} \rightarrow G_{1, q}$. In this case,

$$
l\left(G_{3, j}\right)=j-p+1+l\left(G_{1, q}\right)=j-p+1+q+2 \leq j-1+n+3<j+n+2 .
$$

(c) $G_{3, p} \rightarrow G_{0, q}$. In this case,

$$
l\left(G_{3,1}\right)=j-p+1+q \leq j+q \leq j+n+3 .
$$

CASE 5: $m \geq 4$ is even. Assume that the inequalities hold for lesser m. Every u-sequence for $G_{m, j}$ that can have maximal length has the beginning

$$
G_{m, j} \rightarrow G_{m, j-1} \rightarrow \cdots \rightarrow G_{m, p}
$$

and then one of the following continuations.
(a) $G_{m, p} \rightarrow G_{m-1, q}$. Then $l\left(G_{m, j}\right)=j-p+1+l\left(G_{m-1, q}\right)$. Since $m-1$ is an odd less than m, we have $l\left(G_{m-1, q}\right) \leq q+(m-2) n / 2+3$. Therefore,

$$
l\left(G_{m, j}\right) \leq j-p+1+q+3 \leq j+2+m n / 2
$$

for $n \geq 2$.
(b) $G_{m, p} \rightarrow G_{m-2, q}$. Since $m-2$ is odd and $n-2 \geq 2$, it follows that

$$
l\left(G_{m, j}\right) \leq j-p+1+l\left(G_{m-2, q}\right) \leq j-1+1+q+(m-2) n / 2+2 \leq j+2+m n / 2 .
$$

(c) $G_{m, p} \rightarrow G_{m-r, q}, r \geq 3,1 \leq q \leq n$. We have

$$
l\left(G_{m, j}\right)=j-p+1+l\left(G_{m-r, q}\right) \leq j-p+1+n+(m-r) n / 2+3 \leq m n / 2+j+2 .
$$

CASE 6: $m \geq 5$ is odd.
As in Case 5 , a u-sequence that is a candidate to be maximal has the beginning

$$
G_{m, j} \rightarrow G_{m, j-1} \rightarrow \cdots \rightarrow G_{m, p}
$$

$1 \leq p \leq j$, and then one of the following continuations.
(a) $G_{m, p} \rightarrow G_{m-1, q}$. By induction we then infer

$$
l\left(G_{m, j}\right)=j-p+1+l\left(G_{m-1, q}\right) \leq j-p+1+q+(m-1) n / 2+2 \leq j+3+(m-1) n / 2,
$$

since $q \leq p$.
(b) $G_{m, p} \rightarrow G_{m-2, q}$. In this case,

$$
\begin{aligned}
& l\left(G_{m, j}\right)=j-p+1+l\left(G_{m-2, q}\right) \leq j-p+1+l\left(W_{m-2, n}\right) \\
& \leq j-p+1+n+(m-3) n / 2+3 \leq j+(m-1) n / 2+3 .
\end{aligned}
$$

(c) $G_{m, p} \rightarrow G_{m-r, q}, r \geq 3$. In this case, we have

$$
l\left(G_{m, j}\right)=j-p+1+l\left(G_{m-r, q}\right) \leq j-p+1+n+(m-3) n / 2+3 \leq j+(m-1) n / 2+3 .
$$

The theorem is proven.
The following theorem makes it possible to calculate the nonabelian topological dimension for $W_{m, n}$. For all nonnegative integers m and n, define the function

$$
F_{0}(m, n)= \begin{cases}m n / 2+1 & \text { for } n \geq 2 \text { and even } m \\ (m+1) n / 2 & \text { for } n \geq 1 \text { and odd } m \\ m & \text { for } n=1 \text { and every } m\end{cases}
$$

Theorem $\mathbf{1}^{\prime}$. Let A_{m} be a free abelian group of rank m, let T_{n} be a free $\mathbf{Z} A_{m}$-module of rank n, and let $W_{m, n}=M\left(T_{n}, A_{m}\right)$. Then $\operatorname{tdim}_{0}\left(W_{m, n}\right)$ is equal to $F_{0}(m, n)$.

Proof is similar to the proof of Theorem 1 and is based on the following inequalities. Suppose that a u-group $G_{m, j}$ has the characteristics $\alpha\left(G_{m, j}\right)=m, \beta\left(G_{m, j}\right)=j W_{m, n}$. Therefore,
(1) if $m=2 l$ then $\operatorname{tdim}_{0}\left(G_{m, j}\right) \leq(l-1) n+j+1$;
(2) if $m=2 l+1$ then $\operatorname{tdim}_{0}\left(G_{m, j}\right)=\leq l n+j$.

The proof is finished by noting that the nonabelian u-sequences

$$
\begin{gathered}
W_{1, n} \rightarrow W_{1, n-1} \rightarrow \cdots \rightarrow W_{1,1} \rightarrow 1, \\
W_{2, n} \rightarrow W_{2, n-1} \rightarrow \cdots \rightarrow W_{2,1} \rightarrow W_{1,1} \rightarrow 1, \\
W_{2 l, n} \rightarrow W_{2 l-1, n} \rightarrow \ldots, \\
W_{2 l+1, n} \rightarrow W_{2 l+1, n-1} \rightarrow \cdots \rightarrow W_{2 l+1,1} \rightarrow W_{2 l-1, n} \rightarrow \ldots
\end{gathered}
$$

have length $F_{0}(m, n)$.

Theorem 2. The equality $\operatorname{tdim}_{0}(G)=\operatorname{tdim}_{0}\left(G_{\text {split }}\right)$ holds for every finitely generated nonabelian u-group G.

Proof. We first prove that $\operatorname{tdim}_{0}(G) \geq \operatorname{tdim}_{0}\left(G_{\text {split }}\right)$. Let

$$
G=G_{0} \xrightarrow{\varphi_{1}} G_{1} \xrightarrow{\varphi_{2}} \ldots \xrightarrow{\varphi_{n-1}} G_{n-1} \xrightarrow{\varphi_{n}} 1
$$

be a sequence of nonabelian u-groups and epimorphisms. By Proposition 4, there exist homomorphisms $\psi_{i}: G_{i-1, \text { split }} \rightarrow G_{i, \text { split }}$ and an embedding $\varphi_{i}: G_{i-1} \rightarrow G_{i}$ such that the diagram

commutes.
Put $H_{0}=G_{0, \text { split }}$ and denote by H_{i} the image of H_{i-1} under ψ_{i}. Denote the restriction of ψ_{i} to H_{i-1} by $\widehat{\psi}_{i}$. We obtain the sequence of u-groups and epimorphisms

$$
H_{0} \xrightarrow{\widehat{\psi}_{1}} H_{1} \xrightarrow{\widehat{\psi}_{2}} \ldots \xrightarrow{\widehat{\psi}_{n-1}} H_{n-1} \xrightarrow{\widehat{\psi}_{n}} 1 .
$$

Show that H_{1}, \ldots, H_{n-1} are nonabelian u-groups and the kernels of the epimorphisms $\widehat{\psi}_{i}$ are nontrivial.
Since $G_{i}^{\alpha_{i}} \leq H_{i} \leq G_{i, \text { split }}$; therefore, H_{i} are nonabelian u-groups. Let g_{i-1} be a nonidentity element in $\operatorname{ker} \varphi_{i}$. Then $g_{i-1}^{\alpha_{i-1}}$ is a nonidentity element of H_{i} that lies in the kernel of $\widehat{\psi}_{i}$.

Show that

$$
\operatorname{tdim}_{0}\left(G_{\text {split }}\right) \geq \operatorname{tdim}_{0}(G)
$$

Put $T_{0}=\operatorname{Fit}(G), A_{0}=G / T_{0}$. Consider the nonabelian u-sequence

$$
\begin{equation*}
M\left(T_{0}, A_{0}\right) \xrightarrow{\varphi_{1}} M\left(T_{1}, A_{1}\right) \xrightarrow{\varphi_{2}} \ldots \xrightarrow{\varphi_{n}} M\left(T_{n}, A_{n}\right) . \tag{1}
\end{equation*}
$$

Since $M\left(T_{n}, A_{n}\right)$ is a nonabelian group, it contains an element h_{n} not belonging to its Fitting radical. Let g_{0}^{\prime} be a preimage of h_{n} in $M\left(T_{0}, A_{0}\right)$. The element g_{0}^{\prime} has the form

$$
\left(\begin{array}{cc}
a_{0} & 0 \\
t_{0} & 1
\end{array}\right),
$$

where $1 \neq a_{0} \in A_{0}, t_{0} \in T_{0}$. Choose an element g_{0} in G so that its image in A_{0} be equal a_{0}.
Consider the splittable envelope and standard embedding of G corresponding to g_{0}, i.e.,

$$
\alpha: g \mapsto\left(\begin{array}{cc}
\bar{g} & 0 \\
{\left[g, g_{0}\right]} & 1
\end{array}\right) .
$$

The epimorphisms φ_{i} induce epimorphisms of abelian groups $\bar{\varphi}_{i}: A_{i-1} \rightarrow A_{i}$ and module epimorphisms $\widetilde{\varphi}_{i}: T_{i-1} \rightarrow T_{i}$ that agree with the corresponding $\bar{\varphi}_{i}$'s.

Consider the epimorphisms $\psi_{1}, \ldots, \psi_{n}$ defined as follows:

$$
\begin{aligned}
\psi_{1}:\left(\begin{array}{cc}
\bar{g} & 0 \\
{\left[g, g_{0}\right]} & 1
\end{array}\right) \mapsto\left(\begin{array}{cc}
\bar{g}^{\bar{\varphi}_{1}} & 0 \\
{\left[g, g_{0}\right]^{\widetilde{\varphi}_{1}}} & 1
\end{array}\right), \\
\psi_{2}:\left(\begin{array}{cc}
\bar{g}^{\bar{\varphi}_{1}} & 0 \\
{\left[g, g_{0}\right]^{\widetilde{\varphi}_{1}}} & 1
\end{array}\right) \mapsto\left(\begin{array}{cc}
\bar{g}^{\bar{\varphi}_{1} \bar{\varphi}_{2}} & 0 \\
{\left[g, g_{0}\right]^{\widetilde{\varphi}_{1} \widetilde{\varphi}_{2}}} & 1
\end{array}\right), \quad \text { etc. }
\end{aligned}
$$

Put $G_{i}=G^{\alpha \psi_{1} \ldots \psi_{i}}$. We obtain the sequence

$$
G=G_{0} \xrightarrow{\psi_{1}} G_{1} \xrightarrow{\psi_{2}} \ldots \xrightarrow{\psi_{n-1}} G_{n-1} \xrightarrow{\psi_{n}} G_{n} .
$$

Show that all groups in this sequence are nonabelian u-groups and all epimorphisms have nontrivial kernels.

Indeed, suppose that t_{n} is a nonzero element in the Fitting radical of $M\left(T_{n}, A_{n}\right)$ and t_{0} is its preimage in $M\left(T_{0}, A_{0}\right)$. The element $t_{0}^{g_{0}-1}$ belongs to the Fitting radical of G and is nonzero. Its image is nonzero in the Fitting radical of $M\left(T_{n}, A_{n}\right)$ by the choice of g_{0} and the fact that $M\left(T_{n}, A_{n}\right)$ is a u-group. Furthermore, the image of g_{0} in $M\left(T_{n}, A_{n}\right)$ has the form $\left(\begin{array}{cc}a_{n} & 0 \\ * & 1\end{array}\right)$, where $a_{n} \neq 1$. Therefore, $M\left(T_{n}, A_{n}\right)$ is a nonabelian group.

We are left with proving that the kernels of the ψ_{i} 's are nontrivial. The epimorphisms φ_{i} either decrease the value of α or leave it unchanged but, in this case, they diminish the value of β. Since the parameters $\alpha\left(G_{i}\right)$ and $\alpha\left(H_{i}\right)$ coincide, in the first case, ψ_{i} has a nonidentity kernel. If α is not changed under ψ_{i} then the kernel ker φ_{i} has a nontrivial intersection with the Fitting radical of $M\left(T_{i-1}, A_{i-1}\right)$. Suppose that $1 \neq t \in \operatorname{ker} \varphi_{i}$. Then $1 \neq t^{g_{0}-1} \in \operatorname{ker} \psi_{i}$. The theorem is proven.

Theorem 3. Let G be a free metabelian group of rank $n \geq 2$. Then $\operatorname{tdim}_{0}(G)=F_{0}(n, n-1)$.
Proof. Let $G^{\prime}=T$ be the Fitting radical of G and put $G / T=A$. By Theorem 2,

$$
\operatorname{tdim}_{0}(G)=\operatorname{tdim}_{0}(M(T, A))
$$

Consequently, the theorem is equivalent to the fact that

$$
\operatorname{tdim}_{0}(M(T, A))=\operatorname{tdim}_{0}(M(L, A))
$$

where L is a free $\mathbf{Z} A$-module of $\operatorname{rank} n-1$.
Let

$$
\begin{equation*}
M(T, A)=M\left(T_{0}, A_{0}\right) \xrightarrow{\varphi_{1}} M\left(T_{1}, A_{1}\right) \xrightarrow{\varphi_{2}} \ldots \xrightarrow{\varphi_{l}} M\left(T_{l}, A_{l}\right) \tag{2}
\end{equation*}
$$

be a sequence of nonabelian u-groups and epimorphisms.
Suppose that x_{1}, \ldots, x_{n} is a basis of G.
Since $M\left(T_{l}, A_{l}\right)$ is a nonabelian group, the image of a generator a_{1} of A is mapped to a nonidentity element of A_{l}. Denote by a_{1} the image of x_{1} in $A=G / T$.

The Magnus embedding [5] implies that the system of elements $\left\{\left[x_{1}, x_{2}\right], \ldots,\left[x_{1}, x_{n}\right]\right\}$ generates a free $\mathbf{Z} A$-module and is its base. Take this submodule T as L and the embedding $\alpha\left(x_{1}\right)$ as the embedding of G into its splittable envelope $M(T, A)$.

All elements x_{i}, x_{j}, x_{m} in G satisfy the relation

$$
\left[x_{i}, x_{j}\right]^{1-x_{m}}\left[x_{j}, x_{m}\right]^{1-x_{i}}\left[x_{m}, x_{i}\right]^{1-x_{j}}=1
$$

Therefore, the module T and its submodule L meet the inclusion $T\left(1-a_{1}\right) \leq L$.
Each of the φ_{i} 's induces an epimorphism $\bar{\varphi}: A_{i-1} \rightarrow A_{i}$ of abelian groups and a module epimorphism $\widetilde{\varphi}_{i}: T_{i-1} \rightarrow T_{i}$ that agrees with $\bar{\varphi}$.

Put $L=L_{0}, L_{i}=L_{i-1}^{\widetilde{\varphi}_{i}}$. Denote by $\widehat{\varphi}_{i}$ the restriction of φ_{i} to the subgroup $M\left(L_{i-1}, A_{i-1}\right)$. We obtain the sequence

$$
M(L, A)=M\left(L_{0}, A_{0}\right) \xrightarrow{\widehat{\varphi}_{1}} M\left(L_{1}, A_{1}\right) \xrightarrow{\widehat{\varphi}_{2}} \ldots \xrightarrow{\widehat{\varphi}_{l}} M\left(L_{l}, A_{l}\right)
$$

of nontrivial groups, since $T_{i-1}\left(1-a_{1}\right) \leq L_{i-1}$ and $T_{i-1} \neq 0$.
Show that the kernels of all $\widehat{\varphi}_{i}$ are nontrivial. The epimorphisms φ_{i} are nontrivial. Therefore, $\bar{\varphi}_{i}$ or $\widetilde{\varphi}_{i}$ is a nontrivial epimorphism. Consider the two cases:

1. $\operatorname{ker}\left(\widetilde{\varphi}_{i}\right) \neq 0$. Suppose that $0 \neq t \in \operatorname{ker}\left(\widetilde{\varphi}_{i}\right)$. Since $T_{i-1}\left(1-a_{1}\right) \leq L_{i-1}$, we have

$$
0 \neq t\left(1-a_{1}\right) \in \operatorname{ker}\left(\widetilde{\varphi}_{i}\right) \cap L_{i-1} \leq \operatorname{ker}\left(\hat{\varphi}_{i}\right)
$$

2. $\operatorname{ker}\left(\bar{\varphi}_{i}\right) \neq 1$. In this case, the rank of A_{i} is less than that of A_{i-1}. Hence, $\operatorname{ker}\left(\hat{\varphi}_{i}\right) \neq 1$.

Thus, we have proven the inequality $\operatorname{tdim}_{0}(G) \leq F_{0}(n, n-1)$.
Prove the reverse inequality. Let

$$
M(F, A)=M\left(F_{0}, A_{0}\right) \xrightarrow{\psi_{1}} M\left(F_{1}, A_{1}\right) \xrightarrow{\psi_{2}} \ldots \xrightarrow{\psi_{l}} M\left(F_{l}, A_{l}\right)
$$

be a nonabelian u-sequence, where F is a free $\mathbf{Z} A$-module of rank $n-1$ and A is a free abelian group of rank n.

Since $M\left(F_{l}, A_{l}\right)$ is a nonabelian group, the image of some generator a_{1} of A differs from the nonidentity of A_{l}. The element a_{1} is the image of the generator x_{1} under the homomorphism $G \rightarrow G / T=A$.

Consider the standard embedding $\alpha\left(x_{1}\right): G \rightarrow M(T, A)$. Let L be the submodule in T defined in the first part of the proof. Then $L\left(1-a_{1}\right) \leq T\left(1-a_{1}\right) \leq L$. Therefore, the u_{λ}-groups meet the inclusions

$$
M\left(L\left(1-a_{1}\right), A\right) \leq M\left(T\left(1-a_{1}\right), A\right) \leq M(L, A)
$$

moreover, the groups $M(L, A)$ and $M\left(L\left(1-a_{1}\right), A\right)$ are isomorphic. Let

$$
M(L, A) \xrightarrow{\varphi_{1}} M(R, B) \xrightarrow{\varphi_{2}} \ldots
$$

be a nonabelian u-sequence. It induces the sequences

$$
\begin{gather*}
M\left(T\left(1-a_{1}\right), A\right) \xrightarrow{\varphi_{1}^{\prime}} M\left(\left(T\left(1-a_{1}\right)\right)^{\widetilde{\varphi}_{1}}, B\right) \xrightarrow{\varphi_{2}^{\prime}} \ldots \\
M\left(L\left(1-a_{1}\right), A\right) \xrightarrow{\varphi_{1}^{\prime \prime}} M\left(R\left(1-a_{1}\right)^{\bar{\varphi}_{1}}, B\right) \xrightarrow{\varphi_{2}^{\prime \prime}} \ldots \tag{3}
\end{gather*}
$$

The sequence (3) consists of nonabelian u-groups and nontrivial epimorphisms. The theorem is proven.
Using Theorems 1 and 1^{\prime} and their proofs, define the topological dimension of a free metabelian group.

Theorem 4. Let G be a free metabelian group of rank $n \geq 2$. Then

$$
\operatorname{tdim}(G)= \begin{cases}F(n, n-1)-1 & \text { if } n \geq 4 \text { is even } \\ F(n, n-1) & \text { if } n \geq 1 \text { is odd } \\ 4 & \text { if } n=2\end{cases}
$$

Proof. Suppose that $n \geq 3$ and $\alpha\left(x_{1}\right): G \rightarrow M\left(T_{n-1}, A_{n}\right)$, where $\bar{x}_{1}, \ldots, \bar{x}_{n}$ is a basis of A_{n}, $t_{i}=\left[x_{i}, x_{1}\right], i=2, \ldots, n$, is a basis of the free module T_{n-1}. Then

$$
x_{i}^{\alpha}=\left(\begin{array}{cc}
\bar{x}_{i} & 0 \\
{\left[x_{i}, x_{1}\right]} & 1
\end{array}\right), \quad i=2, \ldots, n .
$$

Suppose that $n \geq 4$ is even. Consider a nonabelian u-sequence for the group $W_{n, n-1}=M\left(T_{n-1}, A_{n}\right)$ that passes through all groups $W_{i, j}$ for even $i, 2 \leq i \leq n$, and all $1 \leq j \leq n-1$. It is easy to verify that the length of this sequence is maximal, i.e., is equal to $F_{0}(n, n-1)$. Continue it with the abelianization of $W_{2, n-1}$. Thus, the abelian part of the sequence begins with the group $B_{n+1}=\left\langle\bar{x}_{n-1}, \bar{x}_{n}, t_{1}, \ldots, t_{n-1}\right\rangle$. The image of the group G in B_{n+1} coincides with $B_{n}=\left\langle\bar{x}_{n}, t_{1}, \ldots, t_{n-1}\right\rangle$. Since $F(n, n-1)-F_{0}(n, n-1)=$ $n+1$, it follows that $\operatorname{tdim}(G) \geq F(n, n-1)-1$. Granted the inequality $\operatorname{tdim}(G) \leq \operatorname{tdim}_{0}(G)+n$, we obtain the desired result.

In the case when $n \geq 3$ is odd, the proof follows from two remarks. First, the definition implies that $F(n, n-1)-F_{0}(n, n-1)=2$. Second, it is necessary to prove that the topological dimension
of the subgroup G cannot exceed the dimension of the group $M\left(T_{n-1}, A_{n}\right)$. This result implies that $\operatorname{tdim}(G)=F(n, n-1)$.

To check the inequality $\operatorname{tdim}(G) \leq \operatorname{tdim}\left(M\left(T_{n-1}, A_{n}\right)\right)$, observe that, in proving Proposition 6 , for every epimorphism $\varphi: G_{1} \rightarrow G_{2}$ of a nonabelian u-group, we constructed a homomorphism $\varphi^{*}: G_{1, \text { split }} \rightarrow$ $G_{2, \text { split }}$; moreover, $\operatorname{ker} \varphi^{*}$ is the splitting of the kernel of φ (in coordinates). Furthermore, recall that the characteristics of the groups G_{i} and $G_{i, \text { split }}$ coincide.

This proposition extends obviously to the case when G_{2} is an abelian group, provided that $\operatorname{ker} \varphi$ includes Fit $\left(G_{1}\right)$. As above, denote the so-obtained homomorphism by φ^{*} and call it the splitting of φ.

Given a free metabelian group G, consider a u-sequence of maximal length $\operatorname{tdim}(G)$

$$
\begin{equation*}
G=G_{0} \xrightarrow{\varphi_{1}} G_{1} \xrightarrow{\varphi_{2}} \ldots \xrightarrow{\varphi_{l}} G_{l} \xrightarrow{\varphi_{l+1}} A_{r} \rightarrow \cdots \rightarrow 1, \tag{4}
\end{equation*}
$$

where A_{r} is a free abelian group of rank r and all preceding groups are nonabelian. From this sequence, construct the induced chain

$$
\begin{equation*}
G=G_{0, \text { split }} \xrightarrow{\varphi_{1}^{*}} G_{1, \text { split }} \xrightarrow{\varphi_{2}^{*}} \ldots \xrightarrow{\varphi_{l}^{*}} G_{l, \text { split }} \xrightarrow{\varphi_{l+1}^{*}} A_{t} \rightarrow \cdots \rightarrow 1 . \tag{5}
\end{equation*}
$$

We need to prove that the rank of A_{r} is equal to the rank t of the free abelian group A_{t}. Put $\gamma=\varphi_{1} \varphi_{2} \ldots \varphi_{l} \varphi_{l+1}$, i.e., $\gamma: G \rightarrow A_{r}$. Clearly, $\operatorname{ker} \gamma \operatorname{includes} G^{\prime}=\operatorname{Fit}(G)$. Therefore, there exists $\gamma^{*}: G_{0, \text { split }} \rightarrow A_{r}$. Clearly, $\gamma^{*}=\varphi_{1}^{*} \varphi_{2}^{*} \ldots \varphi_{l}^{*} \varphi_{l+1}^{*}$, and $r=t$.

If $n=2$ then a maximal chain of inequalities for the characteristics of u-groups is as follows:

$$
(2,1)>(1,1)>(0,2)>(0,1)>(0,0) .
$$

It has length 4. Since a free metabelian group of rank 2 can be mapped homomorphically onto $W_{1,1}$, this implies that $\operatorname{tam}(G)=4$. The theorem is proven.

References

1. Baumslag G., Myasnikov A. G., and Remeslennikov V. N., "Algebraic geometry over groups. I. Algebraic sets and ideal theory," J. Algebra, 219, No. 1, 16-79 (1999).
2. Remeslennikov V. N., "Dimension of algebraic sets over a free metabelian group," Fund. Prikl. Mat., 7, No. 3, 873-885 (2000).
3. Remeslennikov V. N. and Stohr R., "On the quasivariety generated by a non-cyclic free metabelian group," Algebra Colloq., 11, No. 2, 191-214 (2004).
4. Chapuis O., " \forall-free metabelian groups," J. Symbolic Logic, 62, 16-79 (1997).
5. Remeslennikov V. N. and Sokolov V. G., "Some properties of Magnus embeddings," Algebra i Logika, 9, No. 5, 566-578 (1970).
V. n. Remeslennikov

Omsk Division of the Sobolev Institute of Mathematics, Omsk, Russia
E-mail address: remesl@iitam.omsk.net.ru
E. I. Timoshenko

Novosibirsk State University of Architecture and Building
Novosibirsk, Russia
E-mail address: etim@sibstrin.ru

[^0]: Both authors were supported by the Russian Foundation for Basic Research (Grant 05.01.00292). Moreover, the second author was supported by the Scientific Program "Basic Research in Higher School: Universities of Russia" of the Ministry for Education of the Russian Federation (Grant UR.04.01.031).

