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We prove a number of facts on metabelian products of metabelian groups, useful in algebraic
geometry over groups. Namely, for a metabelian product of arbitrary metabelian groups, we
look at the structure of a derived subgroup, and the Fitting radical; find criteria determining
when a metabelian product of u-groups is again a u-group; and specify conditions under which
a metabelian product of metabelian groups is a strong semidomain.

INTRODUCTION

This work has been accomplished within the framework of the project dealing in creating algebraic
geometry for metabelian groups. The fundamentals of algebraic geometry over groups are presented in
[1, 2]. There, in particular, for every fixed group G, the category of G-groups is introduced, the concepts
of a free G-group in a group variety (quasivariety) and of zero divisors and domain are defined, and the
necessity of these concepts in developing algebraic geometry over G is explained. In the language of those
concepts, for instance, the criterion for algebraic sets being irreducible is formulated for the case where G
is a torsion-free hyperbolic group.

Unfortunately, some of the notions, for example, that of a domain, are inapplicable to metabelian groups,
for a non-trivial metabelian group always insists on non-trivial zero divisors (cf. Sec. 5). In the present
paper, we make attempts to account for the specific character of metabelian groups, and to obtain a number
of results with provision for furthering their applications to problems of creating algebraic geometry over
metabelian groups.

First, for every two metabelian groups, we establish the structure of their metabelian product (Thms. 1-
3); in particular, the theorems proved yield a description of the structure of free G-groups. In [3], note, the
structure of coordinate groups of algebraic sets was described for a free metabelian group F of rank at least
2; specifically, there, the concept of a u-group was defined in terms of a group universally equivalent to F .

In Theorem 4, we formulate a criterion saying when the property of being a u-group is preserved under
metabelian products, which can be appealed to to explicitly compute the coordinate groupGn = G×. . .×G,
n � 1.

In Sec. 5, concepts of a semidomain and of a strong semidomain for metabelian groups are defined
as analogs of the notion of a domain in the general situation, and conditions are specified under which a
metabelian product of two metabelian groups is a strong semidomain.
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1. AUXILIARIES

1.1. Let G be a group, with a, b ∈ G. Then ab = b−1ab and [a, b] = a−1b−1ab. A derived subgroup
of G is denoted by [G,G]. By Fit(G) we denote the Fitting radical of G, that is, a product of all normal
nilpotent subgroups. G1 ∗G2 stands for the metabelian product of metabelian groups G1 and G2.

For a given group A, let the right ZA-module T be defined. Denote by M(A, T ) a group which is an
extension of the additive group of T by A. It will be convenient to identify this group with a multiplicative

group of matrices

(
A 0
T 1

)
.

1.2. Let A be representable as a factor group F/R, where F is a free group with basis {xi | i ∈ I}.
Denote by ai the canonical image of an element xi in A. Consider a right free ZA-module T with basis

{ti | i ∈ I} and a Magnus homomorphism ϕ : F → M(A, T ) defined by the mapping xi →
(
ai 0
ti 1

)
. We

recall some of the known facts.

Proposition 1 [4]. The kernel of the homomorphism ϕ is [R,R].
Therefore ϕ determines an embedding of the group F/[R,R] into a group M(A, T ), which we refer to

as the Magnus embedding.

Proposition 2 [4]. The matrix

(
a 0∑
tiui 1

)
lies in Fϕ if and only if a − 1 =

∑
(ai − 1)ui. In

particular, Rϕ is identified with an additive group of the submodule of T consisting of elements
∑
tiui for

which
∑

(ai − 1)ui = 0.

Let h =

(
a 0
t 1

)
be an arbitrary element of M(A, T ). We distinguish its diagonal and unitriangular

parts: d(h) =

(
a 0
0 1

)
and u(h) =

(
1 0
t 1

)
.

Proposition 3 [5]. Let H be an arbitrary subset of Fϕ and H̄ be the normal closure in M(A, T ) of all
elements d(h) and u(h) whenever h ∈ H . Then H̄ ∩ Fϕ = HFϕ.

2. THE STRUCTURE OF A DERIVED SUBGROUP FOR A
METABELIAN PRODUCT OF METABELIAN GROUPS

Letting G1 and G2 be metabelian groups, we consider their metabelian product G1 ∗ G2. Represent
every group Gj (j = 1, 2) as a factor group Fj/Rj , where Fj is a free metabelian group with basis Xj =
{xi | i ∈ Ij}. Then G is a free factor group F/R, where F is a free metabelian group with basis X =
X1 ∪X2 = {xi | i ∈ I = I1 ∪ I2} and R is the normal closure in F of the set R1 ∪R2. Let F̄j = Fj/[Fj , Fj ]
and F̄ = F/[F, F ], assume that x̄i (i ∈ I) is the canonical image of an element xi in F̄ , and suppose that
Tj is a free ZF̄j-module with basis {ti | i ∈ Ij} and T is a free ZF̄ -module with basis {ti | i ∈ I}. Consider

a Magnus embedding of F into M(F̄ , T ) defined by the formula xi =

(
x̄i 0
ti 1

)
such that Fj embeds into

M(F̄j , Tj).
Proposition 3 implies that G embeds into the factor group of M(F̄ , T ) under the normal closure of

elements d(r) and u(r), where r ∈ R1 ∪ R2. We factor M(F̄ , T ) with respect to the normal closure of
the diagonal elements d(r). In our constructions, then, the free modules T1, T2, and T over the integral
group rings of the groups F̄1, F̄2, and F̄ , respectively, will be replaced by free modules (for which we
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reserve the same designations T1, T2, and T ) over group rings of A = G1/[G1, G1], B = G2/[G2, G2], and
C = A×B = G/[G,G]. Notice that T (as a Z-module) decomposes into the direct sum

⊕∑
b∈B

T1 · b⊕
⊕∑

a∈A

T2 · a.

Let ai (i ∈ I1) be the canonical image of xi ∈ X1 in A and bi (i ∈ I2) be the canonical image of xi ∈ X2

in B. Put

L1 =

{∑
i∈I1

tiui ∈ T1

∣∣∣∣∣ ∑
i∈I1

(ai − 1)ui = 0

}
,

L2 =

{∑
i∈I2

tiui ∈ T2

∣∣∣∣∣ ∑
i∈I2

(ai − 1)ui = 0

}
.

The images of elements of Rj (j = 1, 2) in M(C, T ) are represented by unitriangular matrices, and can
be identified with a submodule R̄j of Tj ; moreover, R̄j � Lj by Prop. 2. The normal closure of a set R̄1∪R̄2

in M(C, T ) is identified with the submodule R̄ of a module T , which, treated as a Z-module, decomposes
into the direct sum

⊕∑
b∈B

R̄1 · b⊕
⊕∑

a∈A

R̄2 · a.

Consider factor modules P = T1/R̄1, S = T2/R̄2, and Q = T/R̄. Obviously, Q, treated as a Z-module,
decomposes into the direct sum

⊕∑
b∈B

P · b⊕
⊕∑

a∈A

S · a.

In view of the above considerations, the group G is canonically embedded into M(C,Q), in which case
G1 embeds into M(A,P ) and G2 embeds into M(B,S). We have

G1/[G1, G1] ∼= A, G2/[G2, G2] ∼= B, G/[G,G] ∼= C.

Therefore

[G1, G1] = G1 ∩
(

1 0
Q 1

)
= G1 ∩

(
1 0
P 1

)
is identified with the submodule P0 = L1/R̄1 of a module P , [G2, G2] — with the submodule S0 = L2/R̄2

of S, and [G,G] — with some submodule Q0 of Q. Notice that Q0 contains

L0 =
⊕∑

b∈B

P0 · b⊕
⊕∑

a∈A

S0 · a

as a submodule. Clearly, the factor Q0/L0 is isomorphic to the derived subgroup of a product of Abelian
groups A and B, treated as a ZC-module. Thus we have in fact proved the following:

THEOREM 1. Let G = G1 ∗G2 be a metabelian product of the metabelian groups

A = G1/[G1, G1], B = G2/[G2, G2], C = A×B = G/[G,G].

Then the derived subgroup [G,G] ofG, treated as a ZC-module, contains a submoduleH , which decomposes
into a direct sum of Z-modules thus:

⊕∑
b∈B

[G1, G1] · b⊕
⊕∑

a∈A

[G2, G2] · a,
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and the factor module [G,G]/H is isomorphic to a derived subgroup of the metabelian product A ∗B.

THEOREM 2. Let A and B be Abelian groups, C = A × B, and G = A ∗ B. Then the derived
subgroup [G,G] of G is isomorphic as a ZC-module to (A− 1)(B − 1) · ZC.

Proof. Let T be the right free module with basis {t1, t2}. Consider a Shmel’kin embedding (cf. [6, 7])
of G in M(C, T ), given by the map

a→
(

a 0
t1(a− 1) 1

)
, b→

(
b 0

t2(b− 1) 1

)
, a ∈ A, b ∈ B.

Then the derived subgroup [G,G] of G is equal to G ∩
(

1 0
T 1

)
and is identified with a submodule L of

T consisting of elements t1u1 + t2u2 and satisfying u1 ∈ (A − 1) · ZC, u2 ∈ (B − 1) · ZC, u1 + u2 = 0.
Obviously, the projection of L into t1 ·ZC is an embedding. It is also easy to see that the image of L, under
this embedding, is equal to t1(A− 1)(B − 1) · ZC. The theorem is proved.

3. FITTING RADICAL FOR A METABELIAN PRODUCT
OF METABELIAN GROUPS

It is obvious that if G is a metabelian group then (in the additive notation)

Fit(G) = [G,G] ∪ {g ∈ G \ [G,G] | (∃n = n(g) ∈ N) [G,G](g − 1)n = 0}.

Also, put

Fitω(G) = [G,G] ∪ {g ∈ G \ [G,G] | (∀x ∈ [G,G]) (∃n = n(g, x) ∈ N) x(g − 1)n = 0}.

The definition above implies that Fitω(G) contains Fit(G) and is a maximal locally nilpotent subgroup of
G containing the derived subgroup.

We say that a metabelian group G is special if G is a periodic 2-group, and the factor group G/[G,G] =
〈a〉 is a cyclic group of order 2. For such a group, [G,G] = [G,G](a−1) and [G,G] = 2[G,G] (since (a−1)2 =
−2(a−1)). Therefore the derived subgroup of a special group is a complete 2-group, and decomposes into a
direct sum of quasicyclic 2-groups. If [G,G] �= 0 then [G,G](a− 1)n+1 = [G,G](2n(a− 1)) = [G,G] �= 0, in
which case G is not a nilpotent group. Clearly, a special group of bounded period has order 2. A non-trivial
example of a special group is the extension of a quasicyclic 2-group by an automorphism mapping each
element into its inverse.

THEOREM 3. Let G = G1 ∗G2 be the metabelian product of non-trivial metabelian groups G1 and
G2. Then:

(1) Fitω(G) is strictly larger than [G,G] iff both of the factors are special groups;
(2) Fit(G) is strictly larger than [G,G] iff both of the factors are cyclic groups of order 2.
Proof. Put A = G1/[G1, G1], B = G2/[G2, G2], and C = A×B = G/[G,G]. We assume, for instance,

that G1 is not special, and prove that Fitω(G) = [G,G]. Consider an element g ∈ G \ [G,G], letting its
projection onto C be equal to c = ab, where a ∈ A and b ∈ B.

First we handle the case where one of the following conditions holds: (1) one of the elements a or
b is equal to 1; (2) a �= 1, b �= 1, and one of the groups A or B is not cyclic of order 2. Consider a
group A ∗B. By Theorem 2, its derived subgroup (as a ZC-module) is isomorpic to (A− 1)(B − 1) · ZC.
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Suppose that condition (1) is satisfied, letting a = 1 and c = b �= 1 for instance. If 1 �= a′ ∈ A then
(a′ − 1)(b− 1)(c− 1)n = (a′ − 1)(b− 1)n+1 �= 0, for any natural n. Therefore g /∈ Fitω(G).

Assume that condition (2) holds, letting |A| > 2 for instance. If |c| =∞ then (a− 1)(b− 1)(c− 1)n �= 0,
for every natural n; so, g /∈ Fitω(G). Suppose that the order of c is finite. Without loss of generality, we can
assume that it is equal to a prime p. Then |a| = |b| = p. If p = 2 then we choose an element a′ ∈ A distinct
from a and 1. We have 〈a′, b, c〉 = 〈a′〉× 〈b〉× 〈c〉, whence (a′− 1)(b− 1)(c− 1)n �= 0, for any natural n. Let
p > 2; then 〈b, c〉 = 〈b〉×〈c〉 and (a−1)(b−1)(c−1)n = (cb−1−1)(b−1)(c−1)n = (c+1−b−cb−1)(c−1)n �= 0,
since 1, b, b−1 freely generate a free Z〈c〉-module. Again we conclude that g /∈ Fitω(G).

We handle the last case where a �= 1, b �= 1, |A| = 2, and |B| = 2. By the hypothesis above, the
group G1 is not special, and [G1, G1] contains an element x whose order is other than a degree of the
number 2. Then x(c − 1)n = x(−2)n−1(c − 1) = x(−2)n−1c − x(−2)n−1 �= 0 for every natural n, since
x(−2)n−1c = x(−2)n−1ab ∈ [G1, G1]b, −x(−2)n−1 ∈ [G1, G1], and by Theorem 1, the sum of Z-modules
[G1, G1]b and [G1, G1] is direct. Therefore g /∈ Fitω(G).

Below we assume that both G1 and G2 are special groups, and that G1 is not cyclic of order 2. We
claim that Fit(G) = [G,G]. Let A = 〈a〉, B = 〈b〉, g ∈ Fit(G), and c be the canonical image of g in C. If
the projection of c onto A is equal to a then 〈g, [G,G]〉 ≡ G1modGG

2 . The group G1, and so also 〈g, [G,G]〉,
will not be nilpotent, a contradiction. Suppose c = b. By Theorem 1, [G1, G1](b − 1) ∼= [G1, G1], whence
[G1, G1](b− 1)n+1 = [G1, G1](2n(b− 1)) �= 0 for any n ∈ N , which is a contradiction with 〈g, [G,G]〉 being
nilpotent. Thus g ∈ [G,G].

Let G1 and G2 both be special, A = 〈a〉, and B = 〈b〉. We prove that Fitω(G) > [G,G]. Choose
in G an element g so that its projection c onto C is equal to ab. Obviously, g /∈ [G,G]. We claim that
g ∈ Fitω(G). The latter inclusion is equivalent to the fact that for any x ∈ [G,G] ([G,G] is treated as
a ZC-module), there exists a natural n for which x(c − 1)n = 0. Notice that [G,G](c − 1) � H (in the
notation of Theorem 1), which follows from the observation that by Theorem 2, the ZC-module [G,G]/H
is isomorphic to (a−1)(b−1) ·ZC, and (a−1)(b−1)(c−1) = 0. Therefore we may assume that x ∈ H . By
Theorem 1, H is a 2-group. Let |x| = 2n. We have x(c−1)n+1 = x(−2)n(c−1) = 0. Thus Fit(G) > [G,G].

Following the argument above, we can show that if G1 = A = 〈a〉 and G2 = B = 〈b〉 are cyclic groups
of order 2 then ab ∈ Fit(G) \ [G,G]. The theorem is proved.

4. METABELIAN PRODUCT OF u-GROUPS

Recall that universal theories for free metabelian groups of ranks at least 2 coincide (cf. [3, 8]). A group
that is universally equivalent to a free metabelian group of rank at least 2 is called a u-group. We have the
following abstract characterization of u-groups.

Proposition 4. A metabelian group G is a u-group if and only if Fit(G) is an isolated Abelian subgroup
distinct from G which, treated as a Z[G/Fit(G)]-module, is torsion free.

[9] contains an example where a metabelian product of two u-groups is not a u-group. We argue for the
following:

THEOREM 4. Let G1 and G2 be u-groups. Their metabelian product G = G1 ∗G2 is again a u-group
if and only if Fit(G1) = [G1, G1] and Fit(G2) = [G2, G2].

Proof. Let Fit(G1) > [G1, G1], g ∈ Fit(G1)\ [G1, G1]. Since [G,G]∩G1 = [G1, G1], we have g /∈ [G,G].
By Theorem 3, Fit(G) = [G,G]. The element g − 1 acts trivially on [G1, G1], and by Proposition 4, G
cannot be a u-group.
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Let Fit(G1) = [G1, G1] and Fit(G2) = [G2, G2]. We prove that G is a u-group. In view of Proposition 4,
the Abelian groups A = G1/[G1, G1] and B = G2/[G2, G2] are torsion free. Put C = A × B. We need to
show that [G,G], treated as a ZC-module, is torsion free. Let 0 �= x ∈ [G,G], 0 �= α ∈ ZC. Here, we make
use of the notation and statement of Theorem 1. If x does not belong to H then, in the factor module
[G,G]/H , x is a non-trivial element. By Theorem 2, the factor module at hand is isomorphic to a module
(A− 1)(B − 1) · ZC. It remains to notice that the latter lacks in torsion since A and B are torsion free.

Suppose that x ∈ H , x = u1 + u2, where

u1 ∈
⊕∑

b∈B

[G1, G1] · b, u2 ∈
⊕∑

a∈A

[G2, G2] · a.

To be specific, let u1 �= 0. We order B. Let

u1 = v1b1 + . . .+ vmbm, α = α1b
′
1 + . . .+ αnb

′
n,

where
vi ∈ [G1, G1], vm �= 0, αj ∈ ZA, αn �= 0, bi, b

′
j ∈ B,

b1 < . . . < bm, b′1 < . . . < b′n.

Since the module [G1, G1] is ZA-torsion free, the leading term of an element u1α, which is equal to
vmαnbmb

′
n, is distinct from zero. Hence xα �= 0. The theorem is proved.

5. METABELIAN PRODUCT OF STRONG SEMIDOMAINS

Recall some of the definitions from [1]. Non-trivial elements x and y of G are called zero divisors if
[xG, yG] = 1. A group without zero divisors is called a domain. Obviously, if a group has a non-trivial
normal Abelian subgroup then such a group cannot be a domain. We can also assert that the non-trivial
elements of Fit(G) are zero divisors in G. A metabelian group G is called a semidomain if the set of zero
divisors coincides with Fit(G) \ {1}. If, in addition, Fit(G) = [G,G], then the group is referred to as a
strong semidomain.

Proposition 5. A metabelian non-Abelian group G is a strong semidomain if and only if 1 �= x ∈ [G,G]
and y ∈ G \ [G,G] imply [x, y] �= 1.

Proof. Let [x, y] = 1, for some non-trivial elements x ∈ [G,G] and y ∈ G \ [G,G]. Then [x, yg] =
[x, y[y, g]] = [x, y][x, [y, g]] = 1, for any g ∈ G. Hence [x, yG] = 1, and consequently y is a zero divisor in G;
so, G is not a strong semidomain.

Now, let 1 �= x ∈ [G,G] and y ∈ G \ [G,G] imply [x, y] �= 1. Suppose 1 �= a, b ∈ G and [aG, bG] = 1. We
need to prove that a, b ∈ [G,G]. If one of a, b lies in [G,G], then, in view of the condition stated above, the
other is also contained in [G,G]. Assume a, b /∈ [G,G]. Let 1 �= x ∈ [G,G]; then [a, x] �= 1 and [a, x, b] �= 1,
whence [ax, b] = [a[a, x], b] = [a, b][a, x, b] �= 1, a contradiction with [aG, bG] = 1. The proposition is proved.

Example. It is easy to see that a permutation group of degree 3, S3, is a strong semidomain. Consider
a metabelian product G = G1 ∗G2 of the groups G1 and G2 of which each is isomorphic to S3. Fix second-
order elements a ∈ G1 and b ∈ G2. Let A = 〈a〉 and B = 〈b〉. Notice that S3 factors into a semidirect
product of an order 2 cyclic subgroup and its derived subgroup. Consequently, G factors into the semidirect
product of A ∗B and the normal closure of the derived subgroups of the groups G1 and G2. In particular,
G contains A ∗ B as a subgroup. Based on Theorem 3, we can assert that A ∗ B has zero divisors not in
the derived subgroup, namely, ab permutes with any element of the derived subgroup of the group A ∗ B.
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The element ab is a zero divisor in G, too, and it is not contained in Fit(G), since Fit(G) = [G,G] by
Theorem 3. Thus the metabelian product of strong semidomains is not necessarily a semidomain.

THEOREM 5. (1) Let the metabelian product G = G1 ∗G2 of two metabelian groups G1 and G2 be
a strong semidomain. Then every factor is either an Abelian group or a strong semidomain.

(2) Let each of the groups G1 and G2 be either a non-trivial torsion-free Abelian group or a strong
semidomain such that the factor group with respect to its derived subgroup is torsion free. Then the
metabelian product G = G1 ∗G2 is a strong semidomain.

Proof. (1) Let [G1, G1] �= 1. Appealing to Proposition 5, we prove that G1 is a strong semidomain.
Let 1 �= x ∈ [G1, G1] and y ∈ G1 \ [G1, G1]. Since x ∈ [G,G], y ∈ G \ [G,G], and G is a strong semidomain,
we have [x, y] �= 1. Hence G1 is a strong semidomain.

(2) Put A = G1/[G1, G1], B = G2/[G2, G2], and C = A × B. Let 1 �= x ∈ [G,G] and y ∈ G \ [G,G].
We need to show that [x, y] �= 1. In the additive language, this means that x(c − 1) �= 0, where c is the
canonical image of y in C. We use the notation of Theorem 1. If x /∈ H then the problem reduces to the
case where G1 = A and G2 = B, and by Theorem 2, the inequality x(c− 1) �= 0 holds since the group ring
ZC has no zero divisors.

Let x ∈ H . As in the proof of Theorem 4, we decompose x into the sum u1 + u2, where

u1 ∈
⊕∑

b∈B

[G1, G1] · b, u2 ∈
⊕∑

a∈A

[G2, G2] · a.

We can assume, for instance, that

u1 = v1b1 + . . .+ vmbm �= 0, vi ∈ [G1, G1], vm �= 0, bi ∈ B, b1 < . . . < bm.

If c ∈ A, then vm(c− 1) �= 0, since G1 is a strong semidomain, and so x(c− 1) �= 0. If c = ab, where a ∈ A
and b ∈ B, b > 1, then 0 �= vmabmb is a leading term in the decomposition of u1(c−1), yielding x(c−1) �= 0.
If 1 > b then the leading term in the decomposition of u1(c − 1) is −vmbm, yielding x(c − 1) �= 0 again.
The theorem is proved.
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