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Let F = F (X) be a free group with basis X and Z[t] be a ring of polynomials with integer
coefficients in t. In this paper we develop a theory of (Z[t], X)-graphs — a powerful tool
in studying finitely generated fully residually free (limit) groups. This theory is based
on the Kharlampovich–Myasnikov characterization of finitely generated fully residually
free groups as subgroups of the Lyndon’s group F Z[t], the author’s representation of
elements of F Z[t] by infinite (Z[t], X)-words, and Stallings folding method for subgroups
of free groups. As an application, we solve the membership problem for finitely generated
subgroups of F Z[t], as well as for finitely generated fully residually free groups.
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1. Introduction

In the seminal paper [12] Stallings introduced an extremely useful notion of a folding
of graphs and initiated the study of subgroups (and automorphisms) of free groups
via folded directed labeled graphs. This approach turned out to be very influential
and allowed researchers to prove many new results and simplify old proofs. We refer
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to a survey [4] for a detailed discussion of the known results and methods in this
area. Here we would like only to mention that, among other things, the Stallings
technique gives a very fast algorithm for the Uniform Membership Problem in free
groups. Namely, given a tuple of words h1, . . . , hn of a free group F (X) with basis
X one can construct in at most quadratic time in |h1| + · · · + |hn| the Stallings
folding (viewed as a deterministic finite automata) ΓH which accepts precisely the
reduced words from F (X) which belong to the subgroup H = 〈h1, . . . , hn〉. Now,
given a reduced word w ∈ F (X) one can check, in linear time in |w|, whether w ∈ H

or not. One of the crucial features of the Stallings method is that the graph Γ(H)
carries all the essential information about the subgroup H itself.

Observe that free groups are precisely the groups that admit free actions on sim-
plicial trees. In the paper [13] Stallings offered a way to extend his ideas to non-free
actions of groups on graphs and trees. Bestvina and Feighn [2] and, independently,
Dunwoody [3] gave a systematic treatment of Stalling’s method in the context of
graphs of groups and groups acting on simplicial trees. A more geometric and unified
approach to this topic which relies on Bass–Serre theory [11, 1] as well as the foldings
technique of Stallings–Bestvina–Feighn–Dunwoody was recently developed in [5].

Research on the membership problem in amalgamated free products, HNN-
extensions and more generally, fundamental groups of graphs of groups has a long
and rich history. In 1958 Mihailova [8] constructed a remarkable example of a
finitely generated subgroup of the direct product F2 × F2 of two free groups of
rank two with unsolvable membership problem. Most of the early results used nor-
mal forms techniques, so the proofs were very technical and sometimes cumbersome.
Bass–Serre theory gives a nice tool to deal with subgroups of fundamental groups
of graphs of groups, but the algorithmic side of the theory is still underdeveloped.
It seems, the first general attempt to provide an algorithmic version of Bass–Serre
subgroup theorem via foldings was made [5]. We refer to this paper for a brief
survey on the membership problem in fundamental groups of graphs of groups.

In the present paper, we develop folded graph methods for finitely generated
subgroups H of finitely generated fully residually free groups G. Notice that such
groups G are subgroups of groups obtained from a free group by a finite sequence
of extensions of centralizers, so the methods of Bass–Serre theory, in particular,
the results from [5], can be in use. However, we elect to generalize directly the
original Stallings method for free groups on fully residually free ones. Namely, using
Kharlampovich–Myasnikov embedding theorem [6] we embed the group G into the
Lyndon’s free Z[t]-group F Z[t]. Notice that such embedding can be found effectively.
This allows one to view the groups G as subgroups of F Z[t] given by a finite set of
generators. Now, for a finitely generated subgroup H of F Z[t] we effectively construct
a folded labeled graph Γ which accepts precisely those elements of F Z[t] (written
in a normal form) which belong to H . To construct Γ we use the representation
of elements from F Z[t] by infinite words in the alphabet X (here X is a basis
of F ) that was introduced in [10]. Thus, we may assume that the subgroup H is
generated by a finite set of infinite words. In this event, to build Γ we mimic the
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classical Stallings folding algorithm replacing finite words by the infinite ones. This
is not immediate, however, and it requires some new ideas. When Γ is constructed
we solve the membership problem for H precisely in the same way as in free groups.
In the subsequent paper we use these graphs Γ associated with the subgroups H of
fully residually free groups to solve other algorithmic problems for H .

2. F Z[t] and Its Elements Viewed as Infinite Words

In this section, at first, we review the embedding of F Z[t] into the set of reduced
infinite words. Then we describe normal forms for elements of F Z[t] which arise
from the embedding.

2.1. Lyndon’s free Z[t]-group and infinite words

Let F = F (X) be a free non-abelian group with basis X = {xi | i ∈ I} and Z[t] be
a ring of polynomials with integer coefficients in t. Let X−1 = {x−1

i | i ∈ I} and
X± = X ∪ X−1. In [7], Lyndon introduced a Z[t]-completion F Z[t] of F , which it
is called now Lyndon’s free Z[t]-group. It turns out that F Z[t] can be described as
a union of a sequence of extensions of centralizers (see [9])

F = G0 < G1 < · · · < Gn < · · · , (2.1)

where Gi+1 is obtained from Gi by extension of all cyclic centralizers in Gi by a
free abelian group of countable rank.

In was shown in [10] that elements of F Z[t] can be viewed as infinite words
defined in the following way. Let A be a discretely ordered abelian group. By 1A we
denote the minimal positive element of A. Recall that if a, b ∈ A then the closed
segment [a, b] is defined as [a, b] = {x ∈ A | a ≤ x ≤ b}. An A-word is a function of
the type

w : [1A, αw] → X±,

where αw ∈ A, αw ≥ 0. The element αw is called the length |w| of w. By ε we denote
the empty word. We say that w is reduced if w(α) �= w(α+1)−1 for any 1A ≤ α < αw.

Then, as in a free group, one can introduce a partial multiplication ∗, an inversion,
a word reduction etc. on the set of all A-words (infinite words) W (A, X). We write
u◦v instead of uv if |uv| = |u|+ |v|. All these definitions make it possible to develop
infinite words techniques, which provide a very convenient combinatorial tool (for
all the details we refer to [10]).

It was proved in [10] that F Z[t] can be canonically embedded into the set of
reduced infinite words R(Z[t], X), where Z[t], an additive group of polynomials
with integer coefficients, is viewed as an ordered abelian group with respect to the
standard lexicographic order ≤ (that is, the order which compares the degrees of
polynomials first, and if the degrees are equal, compares the coefficients of cor-
responding terms starting with the terms of highest degree). More precisely, the
embedding of F Z[t] into R(Z[t], X) was constructed by induction, that is, all Gi
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from the series (2.1) were embedded step by step in the following way. Suppose,
the embedding of Gi into R(Z[t], X) is already constructed. Then, one chooses a
Lyndon’s set Ui ⊂ Gi (see [10]) and the extension of centralizers of all elements
from Ui produces Gi+1, which is now also naturally embedded into R(Z[t], X).

The existence of an embedding of F Z[t] into the set of infinite words implies
automatically the fact that all subgroups of F Z[t] are also subsets of R(Z[t], X),
that is, their elements can be viewed as infinite words. From now on we assume the
embedding ρ : F Z[t] → R(Z[t], X) to be fixed. Moreover, for simplicity we identify
F Z[t] with its image ρ(F Z[t]).

Further we introduce an order on each Ui. Let v ∈ Ui. There exists an infinite
subset Ki(v) ⊂ Ui such that u ∈ Ki(v) only if |u| = |v|. In fact, Ki(u) = Ki(v)
if and only if u, v ∈ Ui, |u| = |v|. Thus, there exist elements ui

1, . . . , u
i
n, . . . in Ui

such that

Ui =
⋃
j

Ki(ui
j).

By Zorn’s Lemma we can assume Ki(ui
j), j ∈ N to be well-ordered under some

order >j. If u, v ∈ Ui, then put

u > v iff



|u| > |v|,
or,
|u| = |v| but u >j v, where u, v ∈ Ki(ui

j) for some ui
j.

Observe that Ui is well-ordered under > and enumerating its elements with respect
to this order we get the set of indices Ii of elements from Ui. The order on Ui

indices an order on U =
⋃

i Ui — if u, v ∈ Ui then we compare them using the
order defined on Ui and if u ∈ Ui, v ∈ Uj then u > v if and only if i > j.

Now we introduce the notion of abelian height for elements from Z[t]. Recall
that Z[t] is a countable direct sum

Z[t] =
∞⊕

i=0

〈ti〉

of copies of the infinite cyclic group Z with the right lexicographic order. So, for
every α ∈ Z[t] there exists a natural number n such that α belongs to

Z
n =

n⊕
i=0

〈ti〉.

Thus, we say that an abelian height hab(α) = n if α ∈ Z
n − Z

n−1.
Compare the definition of abelian height with the definition of height given in

[10]. Observe that if w = uα ∈ R(Z[t], X) then h(w) = h(u)hab(α).

2.2. Reduced forms for elements of F Z[t]

We start with the following convention, which somehow simplifies notations used
throughout the text.
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Conventions 2.1. From now on we call α ∈ Z[t] non-standard if it does not belong
to the “standard” part of Z[t] which is the smallest convex subgroup of Z[t]. If α is
non-standard then we write α � 0.

An element g ∈ Gn+1−Gn has the following representation as a reduced infinite
word

g = g1 ◦ uα1
n1

◦ g2 ◦ · · · ◦ uαl
nl

◦ gl+1, (2.2)

where n1, n2, . . . , nl ∈ In, gk ∈ Gn, k ∈ [1, l + 1], [gk, unk
] �= ε, [gk+1, unk

] �= ε,
k ∈ [1, l], |αk| � 0, k ∈ [1, l]. Observe that this representation is not unique
because for each k ∈ [1, l] it is possible that gk has upk

nk
as a terminal segment and

gk+1 has umk
nk

as an initial segment, so we can adjoin these finite exponents of unk

from the left and from the right to uαk
nk

, to form a new infinite word representation
of the same element g

g = h1 ◦ uβ1
n1

◦ h2 ◦ · · · ◦ uβl
nl

◦ hl+1,

where βk = αk + pk + mk, g1 = h1 ◦ up1
n1

, gl+1 = uml
nl

◦ hl+1, gk = u
mk−1
nk−1 ◦ hk ◦ upk

nk
,

k ∈ [2, l].

Remark 2.2. It is not hard to see that there are infinitely many representations of
g in the form (2.2) — it is possible not only to perform the transformation described
above, that is, to adjoin finite exponents of unk

, k ∈ [1, l] from the left and from
the right to uαk

nk
, but also to perform inverse transformations, that is, to take finite

exponents from each uαk
nk

, k ∈ [1, l] in order to obtain infinitely many tuples of
interleaving elements f1, . . . , fl+1.

Lemma 2.3. Let g ∈ Gn+1 − Gn have two representations

g = g1 ◦ uα1
s1

◦ g2 ◦ · · · ◦ uαl
sl

◦ gl+1,

where sj ∈ In, gj ∈ Gn, [gj , usj ] �= ε, [gj+1, usj ] �= ε, |αj | � 0, j ∈ [1, l] and

g = h1 ◦ uβ1
r1

◦ h2 ◦ · · · ◦ uβl
rl

◦ hm+1,

where tk ∈ In, hk ∈ Gn, [hk, urk
] �= ε, [hk+1, urk

] �= ε, |βk| � 0, k ∈ [1, m]. Then

(1) l = m,

(2) urj = usj , j ∈ [1, l].

Proof. We have

(g−1
l+1 ◦ u−αl

sl
◦ · · · ◦ u−α1

s1
◦ g−1

1 ) ∗ (h1 ◦ uβ1
r1

◦ h2 ◦ · · · ◦ uβl
rl

◦ hm+1) = ε.

By [10, Lemma 6.9] the equality above can hold only if ur1 = us1 and g−1
1 ∗h1 = uk1

s1
.

Thus, we have

(g−1
l+1 ◦ u−αl

sl
◦ · · · ◦ g−1

2 ) ∗ up1
s1

∗ (h2 ◦ · · · ◦ uβl
rl

◦ hm+1) = ε,
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where p1 is finite. Again, by [10, Lemma 6.9], ur2 = us2 and g−1
2 ∗ up1

s1
∗ h2 = uk2

s2

and we can cancel (u−α2
s2

◦ g−1
2 ) ∗ up1

s1
∗ (h2 ◦ uβ2

r2
) into a finite exponent up2

s2
. The

required result now follows by induction.

It follows from Lemma 2.3 that in any representation of g ∈ Gn+1 − Gn as
an infinite word, the number of non-standard exponents uαk

nk
in g (the number of

syllables in some sense) is the same, which is equal to l. This observation makes
it possible to introduce a natural characterization of any representation of g as an
l-tuple {|γ1|, |γ2|, . . . , |γl|}, where |γk| � 0 and

g = f1 ◦ uγ1
n1

◦ f2 ◦ · · · ◦ uγl
nl

◦ fl+1. (2.3)

We call such a representation of g, Un-reduced if the ordered l-tuple {|γ1|,
|γ2|, . . . , |γl|} is maximal with respect to the right lexicographic order among all
possible representations of g.

In [10] we introduced unique reduced forms for elements of F Z[t]. Now, we rede-
fine the procedure for obtaining them and show that in fact unique reduced forms
defined in the proof of [10, Theorem 6.15] coincide with Un-reduced representations
(in the future we will use the term Un-form instead of Un-reduced representation).

Suppose g ∈ Gn+1 − Gn and

g = g1 ◦ uα1
n1

◦ g2 ◦ · · · ◦ uαl
nl

◦ gl+1.

From [10, Lemma 6.9] it follows that for g1 and g2 there exist p1, m1 ∈ N such that
g1 = h1 ◦ up1

n1
, g2 ◦ uα2

n2
= um1

n1
◦ g′2 ◦ uγ2

n2
and h1 does not have u±1

n1
as a terminal

segment, g′2 ◦ uγ2
n2

does not have u±1
n1

as an initial segment. Now we present g as

g = h1 ◦ uβ1
n1

◦ g′2 ◦ uγ2
n2

◦ · · · ◦ uαl
nl

◦ gl+1,

where βk = αk + pk + mk, g1 = h1 ◦ up1
n1

, g2 ◦ uα2
n2

= um1
n1

◦ g′2 ◦ uγ2
n2

. Next we take
the subword of g

g′ = g′2 ◦ uγ2
n2

◦ g3 ◦ · · · ◦ uαl
nl

◦ gl+1

and perform exactly the same procedure of maximizing γ2. The whole construction
follows by induction on l. After a finite number of steps we get

g = h1 ◦ uβ1
n1

◦ h2 ◦ · · · ◦ uβl
nl

◦ hl+1. (2.4)

Lemma 2.4.

(1) (2.4) is unique,
(2) (2.4) is a Un-reduced form for g.

Proof. (1) follows immediately from the construction.
(2) Suppose (2.4) is not a Ui-reduced form for g, that is, there exists an l-tuple

{|γ1|, |γ2|, . . . , |γl|} such that {|γ1|, |γ2|, . . . , |γl|} > {|β1|, |β2|, . . . , |βl|} and

g = f1 ◦ uγ1
n1

◦ f2 ◦ · · · ◦ uγl
nl

◦ fl+1.
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From the inequality above it follows that there exists k0 ∈ [1, l] such that γk = βk,
k ∈ [1, k0 − 1] and γk0 > βk0 .

At first we show that hk = fk, k ∈ [1, k0 − 1]. Assume that k0 > 1.
Observe that |h1| ≤ |f1| otherwise h1 = f1 ◦ um

n1
, |m| > 0, m ∈ Z and β1 is

not maximal — contradiction (here we use [10, Lemma 6.9] from which it follows
that f−1

1 ∗ h1 ∈ 〈un1〉). If |h1| < |f1| then since β1 = γ1 it follows that h2 ◦ uβ2
n2

contains un1 as an initial segment — contradiction with the choice of β1. Thus
|h1| = |f1| and h1 = f1. In the same way, using induction one can prove that
hk = fk, k ∈ [2, k0 − 1].

The simple fact proved above shows that we can assume without loss of gener-
ality that k0 = 1, that is, γ1 > β1 > 0. Again, |h1| ≤ |f1| since otherwise we get
a contradiction. As above if |h1| < |f1| then since β1 < γ1 it follows that h2 ◦ uβ2

n2

contains at least un1 as an initial segment — contradiction with the choice of β1.
Thus we proved that {|β1|, |β2|, . . . , |βl|} is the maximal l-tuple with respect to

the right lexicographical order. So the representation (2.4) is Un-reduced for g.

Let g ∈ Gn+1 − Gn, so it has a representation as an infinite word

g = g1 ◦ uα1
n1

◦ g2 ◦ · · · ◦ uαl
nl

◦ gl+1,

where n1, n2, . . . , nl ∈ In, gk ∈ Gn, [gk, unk
] �= ε, [gk+1, unk

] �= ε, |αk| � 0. Now we
fix some u from the list un1 , un2 , . . . , unl

of elements from Un taken to non-standard
powers in the representation of g (it follows from Lemma 2.3 that this list does not
depend on particular representation of g as a reduced infinite word). Consider now
a representation of g in which we “mark” only non-standard exponents of u, that is,

g = h1 ◦ uβ1 ◦ h2 ◦ · · · ◦ uβp ◦ hp+1, (2.5)

where βj = αmj , mj ∈ [1, l], j ∈ [1, p], h1 = g1 ◦uα1
n1

◦ · · · ◦ gm1, hp+1 = gmp+1 ◦ · · · ◦
gl+1, hk = gmk+1 ◦ · · · ◦ gmk+1 , k ∈ [2, p]. Observe that all hk, in general, do not
belong to Gn any more. We call (2.5) the the u-representation or the u-form for g.

One can prove a statement analogous to Lemma 2.3 for u-forms of g and this
means that we can associate with any such form a p-tuple {|β1|, |β2|, . . . , |βp|} of
elements from Z[t], which are infinite exponents from (2.5).

We call a u-form of g, u-reduced if the ordered p-tuple {|β1|, |β2|, . . . , |βp|} is max-
imal with respect to the right lexicographic order among all possible u-forms for g.

Suppose

h1 ◦ uβ1 ◦ h2 ◦ · · · ◦ uβp ◦ hp+1 (2.6)

is a u-form for g and g is cyclically reduced. Then, obviously

(h1 ◦ uβ1 ◦ h2 ◦ · · · ◦ uβp ◦ hp+1) ◦ (h1 ◦ uβ1 ◦ h2 ◦ · · · ◦ uβp ◦ hp+1) (2.7)

is a u-form of g2. So, we call (2.6) cyclically u-reduced if (2.7) is u-reduced.
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Lemma 2.5. Let

h1 ◦ uβ1 ◦ h2 ◦ · · · ◦ uβp ◦ hp+1

be a u-reduced form of g ∈ Gn+1 −Gn, u ∈ Ui. Then there exists a cyclic permuta-
tion of g such that its u-reduced form is cyclically u-reduced.

Proof. The proof is based on the following observation.

Claim 2.6. Let |w| < |u|. If w ◦ uβ has u as an initial segment in uα ◦ w ◦ uβ,

α, β ∈ Z, α, β > 0 then uα ◦ w cannot have u as a terminal segment.

Suppose on the contrary that u = w ◦u1, u = u1 ◦u2 and u = u3 ◦w, u = u4 ◦u3

at the same time. From these equalities we have |w| = |u2|, |u1| = |u3|, |u4| = |w|.
Since u = w ◦ u1, u = u4 ◦ u3 and |u4| = |w| it follows that w = u4, u1 = u3. Thus
w = u2 and u = u1 ◦ u2 = u2 ◦ u1, but this is possible only if u1 = aδ and u2 = aγ ,
and hence u = aδ+γ , so the centralizer of u in Gn is not cyclic — contradiction
with the choice of Un.

Observe also that if α > 0, β < 0 then neither w ◦uβ has u as an initial segment
nor uα ◦ w has u−1 as a terminal segment. Indeed, if for example w ◦ uβ has u as
an initial segment then u = w ◦ u1, u−1 = u1 ◦ u2. Thus, u = w ◦ u1 = u−1

2 ◦ u−1
1

and u1 = u−1
1 = ε, u = w — contradiction.

Now we complete the proof of the lemma. Without loss of generality we can
assume h1 = ε and that hp+1 does not have u as a terminal segment (using cyclic
permutation we can always obtain these properties). We have two cases

(1) |hp+1| ≥ |u|
Since uβ1 ◦ h2 ◦ · · · ◦ uβp ◦ hp+1 is u-reduced it follows that uβ1 ◦ h2 ◦ · · · ◦ uβp ◦

hp+1 ◦ uβ1 ◦ h2 ◦ · · · ◦ uβp ◦ hp+1 is u-reduced because hp+1 does not have u as an
initial or terminal segment.

(2) |hp+1| < |u|
(a) If uβp ◦hp+1 has u as a terminal segment then by Claim 2.6, hp+1 ◦uβ1 does

not have u as an initial segment. Since uβ1 ◦ h2 ◦ · · · ◦ uβp ◦ hp+1 is u-reduced then
the ordered 2p-tuple {|β1|, |β2|, . . . , |βp|, |β1|, |β2|, . . . , |βp|} is maximal with respect
to the right lexicographic order among all possible u-forms of g2. So, uβ1 ◦h2 ◦ · · · ◦
uβp ◦ hp+1 is cyclically u-reduced.

(b) If hp+1 ◦ uβ1 has u as an initial segment then by Claim 2.6, uβp ◦ hp+1

does not have u as a terminal segment. Thus, take a cyclic permutation g′ =
h2 ◦uβ2 · · · ◦uβp ◦hp+1 ◦uβ1 of g so that h2 ◦uβ2 · · · ◦uβp+1 ◦ b◦uβ1−1 is a u-reduced
form of g′, where u = hp+1 ◦ a = a ◦ b. But then (h2 ◦ uβ2 · · · ◦ uβp+1 ◦ b ◦ uβ1−1) ◦
(h2 ◦ uβ2 · · · ◦ uβp+1 ◦ b ◦ uβ1−1) is u-reduced.

2.3. Standard decomposition of elements of F Z[t]

In this section, from infinite word representation of elements from F Z[t] we obtain
their representation by finite words in some alphabet.
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Let g ∈ F Z[t]. Then g ∈ Gn+1 − Gn for some n ∈ N and g has a Un-reduced
form

g = g1 ◦ uα1
n1

◦ g2 ◦ · · · ◦ uαl
nl

◦ gl+1,

where un1 , un2 , . . . , unl
∈ Un, gk ∈ Gn, k ∈ [1, l + 1], [gk, unk

] �= ε, [gk+1, unk
] �= ε,

|αk| � 0, k ∈ [1, l]. Now, by the induction on n we can assume existence of a
Un−1-reduced form for each gi, i ∈ [1, l]

gi = g(i)1 ◦ u
βm1
m1 ◦ g(i)2 ◦ · · · ◦ u

βms
ms ◦ g(i)s,

where um1 , . . . , ums ∈ Un−1, |βmk
| � 0, k ∈ [1, s], g(i)k ∈ Gn−1, k ∈ [1, s + 1]. One

can get down to the free group F with such a decomposition of g, where subwords
between non-standard powers of elements from Ui are represented step by step as
Ui−1-forms, i ∈ [1, n]. Thus, from this decomposition one can form the following
series for g:

F < H0,1 < H0,2 < · · · < H0,k(0) < H1,1 < · · · < H1,k(1)

< · · · < Hn−1,k(n−1) < Hn,1 < · · · < Hn,k(n), (2.8)

where Hj,1, . . . , Hj,k(j) are subgroups of Gj+1 which do not belong to Gj and
Hj,i is obtained from Hj,i−1 by a centralizer extension of a single element uj,i−1 ∈
Hj,i−1 < Gj . Element g belongs to Hn,k(n) and does not belong to the previous
terms. Series (2.8) is called the extension series for g.

Using the extension series above we can decompose g in the following way:
g ∈ Hn,k(n) has a un,k(n)-reduced form

g = h1 ◦ uβ1
n,k(n) ◦ h2 ◦ · · · ◦ uβl

n,k(n) ◦ hl+1,

where all hj, j ∈ [1, l+1] in their turn are un,k(n)−1-reduced forms representing ele-
ments from Hn,k(n)−1. This gives one a decomposition of g related to its extension
series. We call this decomposition the standard decomposition or standard represen-
tation of g.

Observe that for any g ∈ F Z[t], its standard decomposition can be viewed as a
finite word in the alphabet

B = X± ∪ {uα | u ∈ U, α ∈ Z[t] − Z}.
We denote this product by π(g) so we have

π(g) = π(h1) uβ1
n,k(n) π(h2) · · · uβl

n,k(n) π(hl+1),

where π(hi) is a finite product in the alphabet B corresponding to hi, and from
now on, by the standard decomposition of an element g we understand not the
representation of g as a reduced infinite word but the finite word π(g).

Let U(g) be a finite subset of U such that u ∈ U(g) only if π(g) contains a letter
bi ∈ B such that bi = uα, α ∈ Z[t] − Z. Observe that U(g) is ordered with respect
to the order induced from U , that is, we have

U(g) = {u1, . . . , um},
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where ui < uj if i < j and um = un,k(n). By max{U(g)} we denote the maximal
element of U(g).

If u ∈ U(g) then by degu(g) we denote the maximal degree of infinite exponents
of u which appear in π(g).

It is easy to see that in general π(g1◦g2) �= π(g1)π(g2) and π(g◦g) = π(g)π(g) if
and only if the u-reduced form of g is cyclically u-reduced, where u = max{U(g)}.

From the definition of Lyndon’s set and the results of [10] it follows that if
R ⊂ Gn is a Lyndon’s set then a set R′ obtained from R by cyclic decompositions
of its elements is also a Lyndon’s set. Thus, by Lemma 2.5 we can assume a w-
reduced form of any u ∈ Un to be cyclically w-reduced, where w = max{U(u)}.
Hence, we can assume

π(u ◦ u) = π(u)π(u)

for any u ∈ U .

3. Graphs Labeled by Infinite Z[t]-Words

In this section we introduce the notion of (Z[t], X)-graphs and describe their basic
properties.

3.1. Labeled graphs

Using the notation introduced in the previous section we adjust basic notions from
[4] to F Z[t].

Definition 3.1. By a (Z[t], X)-labeled directed graph ((Z[t], X)-graph) Γ we mean
the following.

(1) Γ is a combinatorial graph where every edge has a direction and is labeled either
by a letter from X or by an infinite exponent uα ∈ F Z[t], u ∈ U , α ∈ Z[t], α > 0,
denoted µ(e);

(2) for each edge e of Γ we denote the origin of e by o(e) and the terminus of
e by t(e).

For each edge e of (Z[t], X)-graph we introduce a formal inverse e−1 of e with
label µ(e)−1 and the endpoints defined as o(e−1) = t(e), t(e−1) = o(e), that is,
the direction of e−1 is reversed with respect to the direction of e. For the new edge
e−1 we set (e−1)−1 = e. The new graph, endowed with this additional structure we
denote by Γ̂. In fact, usually we will abuse notation by disregarding the difference
between Γ and Γ̂.

Now we have a partition E(Γ̂) = E(Γ) ∪ E(Γ) and we say that edges of Γ are
positively oriented in Γ̂, while their formal inverses e−1 are negatively oriented in Γ̂.

Definition 3.2. A path p in Γ is a sequence of edges p = e1 · · · ek, where each ei

is an edge of Γ̂ and the origin of each ei is the terminus of ei−1.
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Observe that µ(p) = µ(e1) · · ·µ(ek) is a word in the alphabet X±∪{uα | u ∈ U,

α ∈ Z[t]} and we denote by µ(p) the reduced infinite word µ(e1) ∗ · · · ∗ µ(ek).
We will be using two different notions of the length of a path p = e1 · · · ek in Γ

(1) combinatorial length |p| set equal to k, and
(2) word length wl(p) =

∑k
i=1 l(µ(ei)).

In fact, from these two definitions above two possible meanings of an irreducible
path arise: an irreducible path in combinatorial sense and an irreducible path in the
sense that its label viewed as an infinite word in F Z[t] is reduced. Here are formal
definitions.

Definition 3.3. A path p = e1 · · · ek in a (Z[t], X)-graph Γ is called reduced if
ei �= e−1

i+1 for all i ∈ [1, k − 1].

Definition 3.4. A path p = e1 · · · ek in a (Z[t], X)-graph Γ is called label reduced if

(1) p is reduced;
(2) ek1 · · · ek2 , k1 ≤ k2 is a subpath of p such that µ(ei) = uαi , u ∈ U , αi ∈ Z[t],

i ∈ [k1, k2] and µ(ek1−1) �= uβ1 , µ(ek2+1) �= uβ2 for any β1, β2 ∈ Z[t], provided
k1 − 1, k2 + 1 ∈ [1, k], then α = αk1 + · · · + αk2 �= 0 and µ(ek1−1) ∗ uα =
µ(ek1−1) ◦ uα, uα ∗ µ(ek2+1) = uα ◦ µ(ek2+1).

3.2. Free foldings

Here we define free (partial) foldings and partially folded (Z[t], X)-graphs. Observe
that the definition of a partial folding below is exactly the same as the corresponding
definition of a folding in free groups (see [4]).

Definition 3.5. Let Γ be a finite (Z[t], X)-graph and let v be a vertex of Γ. The
valence of v denoted val(v) is the number of all edges in Γ which have v as an origin
or a terminus.

Let Γ be a (Z[t], X)-graph. Suppose v0 is a vertex of Γ and f1, f2 are two
distinct edges of Γ̂ such that o(f1) = o(f2) = v0, µ(f1) = µ(f2) = x ∈ X± or
µ(f1) = µ(f2) = uα, u ∈ U, α ∈ Z[t]. Let hi be the positive edge of Γ corresponding
to fi (that is, hi = fi if fi is positive and hi = fi

−1 if fi is negative).
Let ∆ be a (Z[t], X)-graph with the following sets of vertices and edges.

V (∆) = (V (Γ) − {t(f1), t(f2)}) ∪ {v}, E(∆) = (E(Γ) − {h1, h2}) ∪ {h}.

The endpoints and arrows for the edges of ∆ are defined in the following way. Let
e ∈ E(∆), e �= h then

(1) we put o∆(e) = oΓ(e) if oΓ(e) �= t(fi) and o∆(e) = v if oΓ(e) = t(fi) for some i,
(2) we put t∆(e) = tΓ(e) if tΓ(e) �= t(fi) and t∆(e) = v if tΓ(e) = t(fi) for some i.
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For the edge h we put o∆(h) = v0, t∆(h) = v if h1 = f1, h2 = f2 and
o∆(h) = v, t∆(h) = v0 otherwise.

We define labels on the edges of ∆ as follows: µ∆(e) = µΓ(e) if e �= h and
µ∆(h) = µΓ(h1) = µΓ(h2).

In other words we obtain ∆ by identification of two edges f1 and f2 in Γ. In this
situation we say that ∆ is obtained from Γ by a free (partial) folding (or by freely
(partially) folding the edges f1 and f2).

There can be introduced a notion of a morphism between two (Z[t], X)-graphs.
That is, if Γ1, Γ2 are (Z[t], X)-graphs then a map θ : Γ1 → Γ2 is called a mor-
phism of (Z[t], X)-graphs, if θ sends vertices to vertices, directed edges to directed
edges, preserves labels of directed edges, and has the property that o(θ(e)) =
θ(o(e)), t(θ(e)) = θ(t(e)) for any edge e of Γ1.

If φ is a partial folding defined above then it is easy to see that φ is a morphism
between Γ and ∆.

Lemma 3.6. Let Γ1 be a (Z[t], X)-graph obtained by a free folding from a graph Γ.
Let v be a vertex of Γ and v1 be the corresponding vertex of Γ1. Then the follow-
ing hold.

(1) If Γ is connected then Γ1 is connected.
(2) Let p be the path from v to v in Γ with label w. Then the edgewise image of p

in Γ1 is a path from v1 to v1 with label w.
(3) If Γ is a finite (Z[t], X)-graph, then the number of edges in Γ1 is one less than

the number of edges in Γ, that is, any free folding decreases the number of
edges in Γ.

Proof. Follows directly from the definition of a free folding.

Definition 3.7. (Z[t], X)-graph Γ is called partially folded if there exist no
two edges e1 and e2 in Γ with µ(e1) = µ(e2) such that o(e1) = o(e2) or
t(e1) = t(e2).

Obviously, Γ is a partially folded (Z[t], X)-graph if and only if one cannot per-
form any free folding in Γ. Moreover the following proposition is true.

Proposition 3.8. Let Γ be a (Z[t], X)-graph, which has only a finite number of
edges. Then there exists a partially folded (Z[t], X)-graph ∆, which can be obtained
from Γ by a finite number of free foldings.

Proof. Since Γ has a finite number of edges by Lemma 3.6 any (Z[t], X)-graph
Γ1 obtained from Γ by a free folding has fewer edges. This provides one with an
inductive argument based on the number of edges in Γ.
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3.3. u-components

In the present subsection we concentrate on some particular subgraphs of (Z[t], X)-
graphs which consist of edges labeled by exponents of elements from U . These
subgraphs are very important in all our further investigations.

Let u ∈ U be fixed.

Definition 3.9. Let Γ be a (Z[t], X)-graph. Vertices v1, v2 ∈ V (Γ) are called u-
equivalent (v1 ∼u v2) if there exists a path p = e1 · · · ek in Γ such that o(e1) =
v1, t(ek) = v2 and µ(ei) = uα

i , αi ∈ Z[t], i ∈ [1, k].

∼u is clearly an equivalence relation on vertices of Γ, so if Γ is finite then all
its vertices can be divided into a finite number of pairwise disjoint equivalence
classes. Suppose v ∈ V (Γ) is fixed. One can take the subgraph of Γ spanned by
vertices u-equivalent to v and remove from it all edges labeled by anything except
for uα, α ∈ Z[t]. The resulting subgraph of Γ we denote by Compu(v) and call the
u-component of v. In other words, the u-component of a vertex v is the subgraph
of Γ all edges of which are labeled by exponents of u.

Definition 3.10. Let Γ be a (Z[t], X)-graph and v ∈ V (Γ), v0 ∈ V (Compu(v)).
We define a set Hu(v0) associated with v0 as

Hu(v0) = {µ(p) | p is a reduced path in Compu(v) from v0 to v0}.
Observe that even when p is a reduced path in Compu(v) its label µ(p) may be

the empty infinite word.

Lemma 3.11. Let Γ be a (Z[t], X)-graph and v ∈ V (Γ), v0 ∈ V (Compu(v)). Then

(1) Hu(v0) is isomorphic to a subgroup of Z[t] and moreover, if Compu(v) is a
finite graph then Hu(v0) is finitely generated,

(2) if v1 ∈ V (Compu(v)) then Hu(v0) � Hu(v1).

Proof. (1) Observe that if p is a cycle in Compu(v) at v0 then µ(p) = uα, α ∈ Z[t].
The concatenation p1p2 of two cycles in Compu(v) at v0 is again a cycle in Compu(v)
at v0 which may or may not be reduced. Let p be the reduced cycle obtained from
p1p2 by making all possible path reductions. Then µ(p) = µ(p1) ∗ µ(p2) = µ(p2) ∗
µ(p1) ∈ Hu(v0) and Hu(v0) is closed under multiplication which is commutative.

Finally, since the inverse path (p1)−1 of p1 is reduced and is labeled by µ(p1)−1,
it follows that Hu(v0) is closed under taking inverses. Also, since ε is a label of an
empty path which is reduced then clearly ε ∈ Hu(v0).

Thus, Hu(v0) is an abelian group.
One can construct a map θ : Hu(v0) → Z[t], where µ(p) = uα θ→ α ∈ Z[t].

Obviously, θ is an isomorphism of Hu(v0) and a subgroup of Z[t]. Moreover, if
Compu(v) is a finite graph then there exists a natural number n such that n ≥
hab(α), where µ(e) = uα and e ranges through all edges of Compu(v). Since for
any reduced cycle p = e1 · · · ek in Compu(v) such that µ(ei) = uαi , i ∈ [1, k] and
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µ(p) = uα1+···+αk = uα, one has hab(α) ≤ maxk
i=1{hab(αi)} and it follows that

Hu(v0) is a subgroup of Z
n which is a a finite rank subgroup of Z[t]. Thus Hu(v0)

is a free abelian group of rank not greater than n.
(2) Since v0 ∼u v1, there exists a path p = f1 · · · fk in Compu(v) such that

o(p) = v0, t(p) = v1 and µ(p) = uγ , γ ∈ Z[t]. The existence of p provides one with
correspondence between cycles at v0 and v1 — if p0 = e1 · · · em is a reduced cycle at
v1 then p1 = f1 · · · fke1 · · · em(fk)−1 · · · (f1)−1 is a cycle at v0 and one can obtain a
reduced cycle p2 at v0 by making all possible path reductions in p1. Observe that
µ(p2) = µ(p1) = µ(p) ∗ µ(p0) ∗ (µ(p))−1 = µ(p0). Thus Hu(v1) ≤ Hu(v0). In the
same way for any cycle at v0 one can construct a corresponding cycle at v1 with
the same label. So Hu(v1) ≥ Hu(v0) and hence Hu(v1) � Hu(v0).

It follows from Lemma 3.11 that one can associate a free abelian group of finite
rank with any finite u-component in a (Z[t], X)-graph Γ.

3.4. u-folded u-components

In Sec. 3.2 we introduced a notion of free foldings, but it turns out that for our
further investigations it is not enough to have only partially folded graphs. In the
present subsection we introduce the notion of U -foldings which are operations on
partially folded (Z[t], X)-graphs.

Let Γ be a (Z[t], X)-graph and let u ∈ U be fixed throughout this subsection.
Let v ∈ V (Γ), v0 ∈ V (Compu(v)).

Free foldings defined in the previous subsection are simple operations on edges
which have the same labels, but they do not cover the case when we have two edges
f1, f2 ∈ E(Compu(v)) such that o(f1) = o(f2) = v0, µ(f1) = uα, µ(f2) = uβ, u ∈
U, α, β ∈ Z[t], α �= β. Since α �= β, no free folding can be applied.

Definition 3.12 (u-folding). Let f1, f2 ∈ E(Compu(v)) be such that o(f1) =
o(f2) = v0 such that µ(f1) = uα, µ(f2) = uβ, α, β ∈ Z[t] and suppose |α| ≥ |β|.
Without loss of generality we can assume both edges to be positively oriented, that
is, α, β > 0 (otherwise we can consider f−1

i , i = 1, 2 instead of fi).
Let Γ1 be a (Z[t], X)-graph defined as follows.

V (Γ1) = V (Γ) ∪ {v1}, E(Γ1) = (E(Γ) − {f1}) ∪ {e1, e2}.

We think of Γ1 as a new (Z[t], X)-graph obtained from Γ by dividing the edge f1

into two edges e1 and e2. The endpoints and arrows for the edges of Γ1 are defined
in the following way. Let e ∈ E(Γ1), e �= e1, e2 then we put oΓ1(e) = oΓ(e) and
tΓ1(e) = tΓ(e)

For the edges e1, e2 we put oΓ1(e1) = oΓ(f1), tΓ1(e1) = v1, oΓ1(e2) =
v1, tΓ1(e2) = tΓ(f1).

Finally, µΓ1(e) = µΓ(e) if e �= e1, e2 and µΓ1(e1) = µΓ(f2), µΓ1(e2) = uα−β .
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1.
uα

uβ

uα

uβ
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uα

v0

v0

uα−β

uβ

v0

v0

uα−β
uβ

v0
v0

uα−β

uβ

Fig. 1. Possible u-foldings.

Thus, in Γ1 we have a pair of edges e1, f2 with origin v0 and the same label uβ ,
so we can apply a free folding ψ to Γ1. After the identification of e1 and f2 the
resulting (Z[t], X)-graph we denote by ∆.

In this situation we say that ∆ is obtained from Γ by a u-folding (or by u-folding
the edges f1 and f2) (see Fig. 1).

Observe that if α = β then the u-folding defined above is just a free folding.
From now on by U -foldings we denote the set of all u-foldings, where u ∈ U .
Unlike free foldings, u-foldings do not define morphisms of (Z[t], X)-graphs

because they involve the operation of division of an edge. Hence, we introduce
a notion of generalized morphism between two (Z[t], X)-graphs. That is, if Γ1, Γ2

are (Z[t], X)-graphs then a map θ : Γ1 → Γ2 is called a generalized morphism of
(Z[t], X)-graphs, if θ sends vertices to vertices, directed edges to reduced paths and
has the property that o(θ(p)) = θ(o(p)), t(θ(p)) = θ(t(p)), µ(θ(p)) = µ(p) for any
reduced path p of Γ1.

Let φ be a u-folding defined above which is applied to the pair of edges {f1, f2}
in E(Compu(v)). By definition, φ involves as a final stage a free folding ψ. Then
we have φ(f1) = ψ(e1)ψ(e2), φ(e) = ψ(e), e ∈ E(Γ), e �= f1 and φ(w) =
ψ(w), w ∈ V (Γ). Observe that it follows from the definition of φ that o(φ(e)) =
o(ψ(e)) = ψ(o(e)) = φ(o(e)), t(φ(e)) = t(ψ(e)) = ψ(t(e)) = φ(t(e)), µ(φ(e)) = µ(e)
for any e ∈ E(Γ), e �= f1 and o(φ(f1)) = o(ψ(e1)) = ψ(o(e1)) = φ(o(f1)),
t(φ(f1)) = t(ψ(e2)) = ψ(t(e2)) = φ(t(f1)), µ(φ(f1)) = µ(f1). Hence, it follows
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that o(φ(p)) = φ(o(p)), t(φ(p)) = φ(t(p)), µ(φ(p)) = µ(p) for any reduced path p

in Γ. Observe that φ(p) may not be reduced.
Thus, we verified that u-folding is a generalized morphism of (Z[t], X)-graphs.

The following result is analogous to Lemma 3.6 about free foldings.

Lemma 3.13. Let Γ1 be a (Z[t], X)-graph obtained by a u-folding from a (Z[t], X)-
graph Γ. Let v be a vertex of Γ and v1 be the corresponding vertex of Γ1. Then the
following hold.

(1) If Γ is connected then Γ1 is connected.
(2) Let p be the path from v to v in Γ such that µ(p) = w. Then the image of p in

Γ1 is a path p1 from v1 to v1 such that µ(p1) = w.
(3) If Γ is a finite (Z[t], X)-graph, then |V (Γ1)| ≤ |V (Γ)|.

Proof. (1) and (3) follow directly from the definition and (2) follows from the fact
that u-foldings are generalized morphisms.

It is easy to see the difference between Lemma 3.6 and Lemma 3.13 above.
Unlike free foldings, u-foldings do not preserve labels of paths just because of the
division of edges involved, but any path in Γ and its image in Γ1 have the same
labels viewed as reduced infinite words.

The following important result follows directly from Lemma 4.3 which will be
proved in Sec. 4.2 in more general context.

Lemma 3.14. Let ∆ be a (Z[t], X)-graph obtained by a u-folding φ from a graph
Γ. Let v be a vertex of Γ such that v belongs to some u-component in Γ. Then φ(v)
belongs to a u-component in ∆ and Hu(v) � Hu(φ(v)).

Any finite u-component can be transformed into a single positively oriented
path with an associated free abelian group of finite rank. The next results show
how one can use u-foldings to get such a form of u-components.

At first, recall that in a connected graph a subgraph is said to be a spanning
tree if this subgraph is a tree and it contains all vertices of the original graph. If
a graph T is a tree then for any two vertices v1, v2 of T there is a unique reduced
path in T from v1 to v2.

Let Γ be a (Z[t], X)-graph and v ∈ V (Γ). We call a path p = e1 · · · ek in
Compu(v) positively oriented (negatively oriented) if αi > 0 (αi < 0), i ∈ [1, k],
where µ(ei) = uαi .

Lemma 3.15. Let T be a finite tree such that all its edges are labeled by uα,

α ∈ Z[t] and let v0 ∈ V (T ). Then T can be transformed by finitely many u-foldings
into a tree T ′ such that if v′0 ∈ V (T ′) corresponds to v0 then for any v ∈ V (T ′)
the unique reduced path pv from v′0 to v is either positively oriented or negatively
oriented.
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Proof. Since v0 can be connected by a unique reduced path to any v ∈ V (T )
and T is finite we have a finite number of such paths pv, v ∈ V (T ). In each path
pv = e1 · · · ek there can be positive edges, that is, labeled by uα, α > 0 and also
negative edges. To prove the statement of the lemma we use induction on the
number of vertices in T such that pv is neither positively nor negatively oriented.
Let BT denote the set of such vertices in T .

If |BT | = 0 then the lemma is already true for T . Thus we assume the statement
to be true for any tree S with |BS | = n − 1.

v0

e1

e2

e3

e4

v0

f1

f2

f3

h1

h2

v0

f1

f2

f3

h2

= h1

v0

f1

f2

f3

h2

= h1

v v

v
v

'

Fig. 2. Case (1), j = 4, i = 2.

Let |BT | = n and take any vertex v from BT . Then pv = e1 · · · ek is a unique
reduced path such that o(p) = v0, t(p) = v, µ(ei) = uαi , i ∈ [1, k]. Without loss of
generality we can assume α1 > 0. Since v ∈ B there exists minimal j ∈ [2, k] such
that αj−1 > 0, αj < 0. Thus t(ej) ∈ BT and again, without loss of generality we
can assume v = t(ej). We have two cases.

(1) α1 + · · · + αj−1 ≥ |αj |. There exists maximal i ∈ [1, j − 1] such that
αi + · · · + αj−1 > |αj | but αi+1 + · · · + αj−1 < |αj |. Hence, ej can be folded step
by step with the negatively oriented path e−1

j−1 · · · e−1
i = f1 · · · fj−i, e−1

j−s = fs, s ∈
[1, j − i] as follows.

ej is divided into negative edges h1, . . . , hj−i by new vertices v1, . . . , vj−i−1 so
that o(h1) = o(ej), t(hs) = o(hs+1) = vs, s ∈ [1, j−i−1], t(hj−i) = t(ej), µ(hs) =
µ(fs) = u−αj−s , s ∈ [1, j−i−1], µ(hj−i) = uαj+αi−1+···+αj−1 . Finally, the sequence
of u-foldings identifies each hs with fs for all s ∈ [1, j − i − 1] and hj−i becomes
an initial part of fj−i = e−1

i . We denote this sequence of u-foldings by φ and let T ′

denote the result of applying φ to T . Observe that after φ is applied v = t(ej) is
identified with a point on edge ei, so φ(v) is connected to v0 by a unique reduced
positively oriented path. Obviously T ′ is also a tree and we have that φ(v) /∈ BT ′ .
Observe also that if w /∈ BT then φ(w) /∈ BT ′ . Indeed, if a vertex w ∈ T is connected
to v0 by a unique path pw such that ej ∈ pw then pw also contains e1 · · · ej−1 and
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w ∈ BT . But such vertices are the only ones for which a path leading to v0 is
changed under φ. So if w′ /∈ BT then pw′ is not affected by φ and φ(pw′) = pw′ . It
follows that |BT ′ | < |BT |.

v0

e1

e2

e3

f1

f2

h1

h2

f1 = h1

v

v0

v

h3

v0

vh3

f2 = h2

Fig. 3. Case (2), j = 3.

(2) α1 + · · · + αj−1 < |αj |. ej can be folded step by step with the negatively
oriented path e−1

j−1 · · · e−1
1 = f1 · · · fj−1, e−1

j−s = fs, s ∈ [1, j − 1] as follows.
ej is divided into negative edges h1, . . . , hj by new vertices v1, . . . , vj−1 so that

o(h1) = o(ej), t(hs) = o(hs+1) = vs, s ∈ [1, j − 1], t(hj) = t(ej), µ(hs) = µ(fs) =
u−αj−s , s ∈ [1, j−1], µ(hj−1) = uαj+α1+···+αj−1 . Finally, the sequence of u-foldings
identifies each hs with fs for all s ∈ [1, j−1]. We denote this sequence of u-foldings
by φ and let T ′ denote the result of applying φ to T . Then T ′ is also a tree and
we have that φ(v) = φ(t(ej)) is connected to φ(v0) = v0 in T ′ by a unique reduced
path which consists of a single negative edge hj . So φ(v) /∈ BT ′ and by the same
argument as in (1) we have that |BT ′ | < |BT |.

Thus, in both cases we obtained a new tree T ′ for which the statement can be
obtained by induction.

As a corollary of Lemma 3.15 we get the following important result.

Corollary 3.16. Let T be a finite tree such that all its edges are labeled by uα,

α ∈ Z[t] and let v0 ∈ V (T ). Then T can be transformed into a simple positively
oriented path by finitely many u-foldings.

Proof. By Lemma 3.15, T can be transformed by finitely many u-foldings into
a tree T ′ with v′0 ∈ V (T ′) corresponding to v0, such that for any v ∈ V (T ′)
the unique reduced path pv from v′0 to v is either positively oriented or negatively
oriented. Now, to complete the proof it is enough to notice that any two finite simple
positively oriented paths which have the same origin w can be folded together into
one simple positively oriented path with the same origin w. So, after finitely many u-
foldings one transforms T ′ into two paths leading from v′0 — one positively oriented
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and another one negatively oriented. Their concatenation is a reduced positively
oriented path.

Now, we return to u-components in a (Z[t], X)-graph Γ.

Lemma 3.17. Let Γ be a (Z[t], X)-graph, v ∈ V (Γ) and C = Compu(v) be finite.
Then there exist a (Z[t], X)-graph ∆ obtained from Γ by finitely many u-foldings
such that v′ ∈ V (∆) corresponds to v and C′ = Compu(v′) consists of a simple
positively oriented path PC′ , some vertices of which may be connected by single
edges not in PC′ .

Proof. Let T be any spanning tree of C. Then, by Corollary 3.16 there exists a
finite sequence {φ1, . . . , φn} of u-foldings which transforms T into a simple posi-
tively oriented path PC′ . Observe that some vertices in PC′ can be connected by
images of edges from C − T . Thus, ∆ is the image of Γ under {φ1, . . . , φn}.

We call C′ from the lemma above a reduced u-component. Since PC′ is a simple
path there exists a vertex zC′ ∈ V (PC′) such that valPC′ (zC′) = 1 and the only
edge in PC′ which has zC′ as an origin is positive. We call zC′ a base-point of C′.

Observe that because of arbitrary choice of a spanning tree for C and arbitrary
order of performing sequences of u-foldings it follows that the reduced u-component
C′ corresponding to C is not unique.

Let Γ be any (Z[t], X)-graph, v ∈ V (Γ) and let C = Compu(v) be a finite
reduced u-component. Then there exists a simple positively oriented path PC in C

which originates from a base-point zC of C. Since C is finite then there are finitely
many edges h1, . . . , hl in C −PC . Any hi connects two vertics in PC so there exists
a unique reduced path qi in PC such that o(hi) = o(qi), t(hi) = t(qi). Moreover,
hiq

−1
i is a cycle in C, so µ(hi) ∗ µ(qi)

−1
= c ∈ Hu(zC).

Now, let p = e1 · · · en be a reduced path in C. Suppose some of its edges
ei1 , . . . , eik

, ij ∈ [1, n] belong to C − PC . Then we construct another path p′ in
the following way: every edge eij is equal to some hij in the list of edges of C −PC ,
so in p we substitute eij by the path qij . The resulting path p′ may be not reduced,
so we perform all possible reductions and obtain a reduced path p′′ all edges of which
belong to PC . We have o(p′′) = o(p), t(p′′) = t(p), µ(p′′) = µ(p) ∗ h, h ∈ Hu(zC)
by definition of qi for each hi ∈ C−PC . Finally, observe that p′′ is uniquely defined
for p because it is a reduced subpath of PC .

Hence, for any reduced path p in C there exists a unique reduced subpath q of
PC with the same endpoints as p and such that µ(p) ∗ µ(q)

−1 ∈ Hu(zC). Further,
we will use the notation q = [p].

The converse is also true, that is, if q is a reduced path in PC and c ∈ Hu(zC)
then, since any element from Hu(zC) can be realized as a reduced label of some
loop at t(q) in C, there exists a reduced path p in C such that o(p) = o(q), t(p) =
t(q), µ(p) = µ(q) ∗ c. Observe that q is not unique with respect to permutation of
cycles.
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The correspondence above shows that any finite reduced u-component C in a
(Z[t], X)-graph is characterized completely by the pair (PC , Hu(zC)).

If C is finite then there exist finitely many subpaths q1, . . . , qs of PC such that
for any path p in C, [p] = qi for some i ∈ [1, s]. Moreover, let PC = f1 · · · fm,
where o(f1) = zC . Let v0 = zC , vi = t(fi), i ∈ [1, m] and let p0, p1, . . . , pm be
reduced subpaths of PC such that o(pi) = zC , t(pi) = vi, i ∈ [0, m]. It follows
that all pi are positively oriented. Then for every reduced subpath pi,j of PC such

that o(pi,j) = vi, t(pi,j) = vj we have µ(pi,j) = µ(pj) ∗ µ(pi)
−1

. By Lemma 3.11,
Hu(zC) is finitely generated and is isomorphic to a subgroup of Z

r, r ∈ N. So if p is
a reduced path in C such that o(p) = vi, t(p) = vj then by definition of [p] we have

µ(p) and µ([p]) = µ(pi,j) = µ(pj) ∗ µ(pi)
−1

are in the same coset in Z
r by Hu(zC).

That is, we can express the label of any reduced path in C in terms of labels of
pi, i ∈ [0, m] and elements from Hu(zC). We call a set of paths p0, p1, . . . , pm a
set of path representatives associated with C and denote this set by Rep(C). The
following result holds.

Lemma 3.18. Let C be a finite reduced u-component in a (Z[t], X)-graph Γ, v ∈
V (C) and let α ∈ Z[t]. If µ(pi) ∗ µ(pj)

−1
/∈ Hu(zC) for any pi, pj ∈ Rep(C), i �= j

then either there exists a unique reduced path p in PC such that o(p) = v and
uα ∈ µ(p) ∗ Hu(zC), or there exists no path q in C with this property.

Proof. Suppose on the contrary that there exist two reduced paths p, q in PC such
that o(p) = v, o(q) = v and uα = µ(p) ∗ h1 = µ(q) ∗ h2, h1, h2 ∈ Hu(zC). Then
µ(p) ∗ µ(q)

−1
= h−1

1 ∗ h2 ∈ Hu(zC).
On the other hand we have that v = vi, t(p) = vj , t(q) = vk, j �= k. So we

have µ(p) = µ(pj) ∗ µ(pi)
−1

, µ(q) = µ(pk) ∗ µ(pi)
−1

. So µ(p) ∗ µ(q)
−1

= (µ(pj) ∗
µ(pi)

−1
) ∗ (µ(pk) ∗ µ(pi)

−1
)−1 = µ(pj) ∗ µ(pk)

−1 ∈ Hu(zC) — contradiction.

If C is reduced and Rep(C) satisfies the condition from Lemma 3.18 then we
call C a u-folded u-component.

Let C be a finite reduced u-component in a (Z[t], X)-graph Γ which is
not u-folded. That is, there exist two vertices vi, vj , i < j in PC such that

µ(pi) ∗µ(pj)
−1 ∈ Hu(zC). Consider a graph ∆ which is obtained from Γ by iden-

tification of vertices vi, vj in C into one new vertex v. We call this operation
a collapse of vi and vj . The resulting u-component in ∆ we denote by C′. In
fact, a collapse can be obtained as a finite sequence of u-foldings. Indeed, since
µ(pi) ∗ µ(pj)

−1
= h ∈ Hu(zC) there exists a positive loop at vi with the label h.

This means that if we add a single edge e to C so that o(e) = t(e) = vi, µ(e) = h

then Hu(zC) is not changed. Then we can apply a sequence of j − i u-foldings to e

and the subpath q = ei+1 · · · ej of PC connecting vi and vj . After these u-foldings
are implemented, vi is identified with vj because µ(q) = h. Since u-foldings do not
change Hu(zC) in u-components a collapse of vi and vj is a valid operation. Observe
that |V (C)| = |V (C′)| + 1. If C′ is not reduced so using finitely many u-foldings
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one can reduce it and since u-foldings do not increase the number of vertices for
the resulting reduced u-component C′′ we have |V (C)| > |V (C′)| ≥ |V (C′′)|. Thus,
the following result holds.

Lemma 3.19. Let Γ be a (Z[t], X)-graph which has finitely many u-components all
of which are finite and reduced. Then there exists a partially folded (Z[t], X)-graph ∆
which is obtained from Γ by finitely many u-foldings such that all its u-components
are u-folded.

4. U-Folded (Z[t], X)-Graphs and Finitely Generated Subgroups
of F Z[t]

In this section we introduce the notion of U -folded (Z[t], X)-graph. Using the nota-
tions developed in the previous section we show how one can transform an arbitrary
(Z[t], X)-graph into a U -folded one.

4.1. Languages associated with (Z[t], X)-graphs

Recall that a graph labeled by letters from X± defines a language of words over
X±. This language can be put into correspondence with a subgroup of a free group
F (X). In the present subsection we generalize this concept to (Z[t], X)-graphs.

Definition 4.1. Let Γ be a (Z[t], X)-graph and let v be a vertex of Γ. We define
the language of Γ with respect to v to be

L(Γ, v) = {µ(p) | p is a reduced path in Γ from v to v}.
If w belongs to L(Γ, v), we will also sometimes say that w is accepted by (Γ, v)

(or just by Γ if v is fixed).
The following result establishes a connection between (Z[t], X)-graphs and sub-

groups in F Z[t].

Lemma 4.2. Let Γ be a finite (Z[t], X)-graph and let v ∈ V (Γ). Then L(Γ, v) is a
subgroup of F Z[t].

Proof. Observe, at first, that L(Γ, v) is a subset of F Z[t] by definition.
Let g1, g2 ∈ L(Γ, v). Then there are reduced paths p1 and p2 from v to v in Γ

such that µ(pi) = gi, i = 1, 2.
The concatenation q of p1 and p2 is a path in Γ from v to v such that µ(q) =

µ(p1) ∗ µ(p2), but q may not be reduced. Let p be the reduced path obtained from
q by making all possible path reductions. This means that the label µ(p) = µ(q)
and o(p) = t(p) = v. Therefore µ(p1) ∗ µ(p2) = µ(p) ∈ L(Γ, v).

Thus, g1 ∗ g2 ∈ L(Γ, v) and L(Γ, v) is closed under multiplication ∗ of infinite
words.

It is easy to see that the inverse path (p1)−1 of p1 is reduced and µ(p−1
1 ) =

µ(p1)−1 = µ(p1)
−1

. This implies that L(Γ, v) is closed under taking inverses. Also,
obviously ε ∈ L(Γ, v).

Thus, L(Γ, v) is a subgroup of F Z[t].



September 4, 2006 19:42 WSPC/132-IJAC 00314

710 A. G. Myasnikov, V. N. Remeslennikov & D. E. Serbin

In the previous section we introduced free foldings and U -foldings and now we
show that these operations do not change the language associated with Γ.

Lemma 4.3. Let Γ be a finite (Z[t], X)-graph and let v ∈ V (Γ). Let ∆1 be a
(Z[t], X)-graph obtained from Γ by a single free folding and let ∆2 be a (Z[t], X)-
graph obtained from Γ by a single u-folding for some u ∈ U, so that v1 ∈ V (∆1)
and v2 ∈ V (∆2) correspond to v. Then

L(Γ, v) = L(∆1, v1) = L(∆2, v2).

Proof. At first we prove L(Γ, v) = L(∆1, v1). If ∆1 is obtained from Γ by iden-
tification of edges e1, e2 ∈ Γ̂, µ(e1) = µ(e2) = x ∈ X±1 then the result follows
from the proof of [4, Lemma 3.4]. If e1, e2 ∈ Γ̂ are labeled by the same exponent
of some u ∈ U then the free folding which identifies e1 and e2 is a u-folding and,
thus, in this case, we reduced the proof of L(Γ, v) = L(∆1, v1) to the proof of
L(Γ, v) = L(∆2, v2).

So let us prove L(Γ, v) = L(∆2, v2).
Suppose ∆1 is obtained from Γ by folding two edges e1, e2 in Γ̂ which have the

same initial vertex w and µ(e1) = uα, µ(e2) = uβ . Without loss of generality we
can assume α ≥ β > 0. Then e1 becomes a path h1h2 in ∆2 such that µ(h1) =
uβ , µ(h2) = uα−β and h1 is identified with e2 in ∆2 into an edge h.

Suppose p is a reduced path in Γ from v to v, so that µ(p) ∈ L(Γ, v). The
image of p in ∆1 by Lemma 3.13 is a path p′ from v2 to v2 such that µ(p) = µ(p′).
However, p′ need not be reduced. Namely, p′ is reduced if and only if p does not
contain any subpaths of the form e−1

2 e1 or e−1
1 e2. Let p′′ be the path obtained from

p′ by performing all possible path reductions in ∆2. Then µ(p) = µ(p′) = µ(p′′)
and µ(p′′) ∈ L(∆2, v2). Thus, we have shown that L(Γ, v) ⊆ L(Γ′, v′).

Suppose now that p′ is an arbitrary reduced path in ∆2 from v2 to v2. We claim
that there is a reduced path p in Γ from v to v such that µ(p) = µ(p′). We will
construct this path explicitly.

(1) α = β. In this case h2 is an empty edge and e1, e2 are identified with the
edge h in ∆2.

The occurrences of h±1 (if any) subdivide p′ into a concatenation of the form:

p′ = p0f0p1f1 · · · fkpk+1,

where fi = h±1 and the paths pi do not involve h±1.
Suppose that for some i we have fi = h. Since pi and pi+1 do not involve the

edge h, they can also be considered as paths in Γ. Moreover, by the definition of
u-folding, in the graph Γ the terminal vertex of pi is joined with the initial vertex of
pi+1 by either the edge e1 or e2. We denote this edge by di (so that di ∈ {e1, e2}).
Note that now pidipi+1 is a reduced path in Γ with the same label as the path
pifipi+1 in ∆2.

Similarly, if for some i we have fi = h−1, we can find di ∈ {e−1
1 , e−1

2 } such that
pidipi+1 is a reduced path in Γ with the same label as the path pifipi+1 in ∆2.
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Then

p = p0d0p1 · · · dkpk+1

is a reduced path in Γ from v to v with the same label as p′. Thus, µ(p′) ∈ L(Γ, v)
and therefore L(∆2, v2) ⊆ L(Γ, v).

(2) α > β. This is a general case when e1 becomes a path hh2 and e2 becomes
the edge h in ∆2. Observe that µ(h) = µ(e2), µ(h2) = µ(e2)−1 ∗ µ(e1) and o(h) =
o(e2) = o(e1), t(h) = t(e2), o(h2) = t(h) = t(e2), t(h2) = t(e1) in ∆2.

Similarly to (1) we subdivide p′ by the occurrences of h±1 and h±1
2 so that

p′ = p0f0p1f1 · · · fkpk+1,

where fi = h±1 or fi = h±1
2 and the paths pi do not involve h±1, h±1

2 .
Any entry of edge h2 we substitute by a path e−1

2 e1 and every entry of h we
substitute by e2 so that h−1

2 is substituted by e−1
1 e2 and h−1 by e−1

2 .
Suppose that for some i we have fi = h. Since pi and pi+1 do not involve

the edge h, they can also be considered as paths in Γ. We have t(pi) = o(h) =
o(e2), o(pi+1) = t(h) = t(e2), so the substitution h → e2 is valid. If on the other
hand for some j we have fj = h2 then t(pj) = o(h2) = t(e2), o(pj+1) = t(h2) = t(e1)
and again the substitution h2 → e−1

2 e1 is valid. Finally, µ(h) = µ(e2), µ(h2) =
µ(e2)−1 ∗ µ(e1) implies that after all possible substitutions in p′ are made, we get
the resulting path p′′ in Γ from v to v such that µ(p′′) = µ(p′), but p′′ may not
be reduced. Let p be the path obtained from p′′ by performing all possible path
reductions in Γ. Then µ(p) = µ(p′′) = µ(p′) and µ(p) ∈ L(Γ, v).

Hence, in both cases (1) and (2) above L(∆2, v2) ⊆ L(Γ, v) which completes the
proof.

Let Γ be a (Z[t], X)-graph and p = e1 · · · ek be a reduced path in Γ. Let g ∈
Gn+1 − Gn and let

π(g) = π(h1)uβ1π(h2) · · ·uβlπ(hl+1),

be the standard decomposition of g, where u = max{U(g)}. We write

µ(p) = π(g)

if p can be subdivided into subpaths

p = p1d1p2 · · ·dlpl+1,

where di is a path in some u-component of Γ and pi is a path in Γ which does
not contain edges labeled by uα, α ∈ Z[t], so that µ(di) = uβi, i ∈ [1, l] and each
equality µ(pi) = π(hi), i ∈ [1, l+1] is defined inductively in the same way. Observe
that if g = x1 · · ·xr ∈ F then µ(p) = π(g) if k = r and µ(ei) = xi for every i ∈ [1, k].

It follows immediately that if µ(p) = π(g) for some g ∈ F Z[t] then p is label
reduced.

Observe that if Γ is a (Z[t], X)-graph and v ∈ V (Γ) then it follows from
Lemma 4.2 that any element of L(Γ, v) is an infinite word in F Z[t] and, thus, has
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the standard decomposition π(g) but it might be impossible to find a label reduced
loop p at v in Γ such that µ(p) = π(g). The main result of the following subsection
is that if Γ is finite and has some particular properties then it is always possible to
find such a path p and p is unique in some sense. Moreover, it will be shown how
the required properties can be obtained in Γ using free foldings and U -foldings.

4.2. U-folded (Z[t], X)-graphs

In this subsection we obtain the main technical result of the paper.
Let Γ be a finite (Z[t], X)-graph. Since Γ is finite there exist only finitely many

edges with labels uα
e , ue ∈ U, α ∈ Z[t]. Thus, there exists K ∈ N such that for

any e ∈ E(Γ) with µ(e) = uα
e it follows that ue ∈ Uje , je ≤ K. It is easy to see

that for each fixed je using ue-foldings described in Sec. 3 one can transform all
ue-components of Γ into ue-folded components. However, because of the nature of
the sets Uje , edges of Γ belong to different levels (we introduce the precise definition
of a level below) and U -foldings do not deal with interactions between these levels.
Moreover, u-foldings applied to some u- component can affect w-components u �= w.
So, one needs some definite procedure which “folds” Γ level by level.

Since Γ is finite the set of elements u ∈ U such that there exists an edge e in Γ
labeled by uα, α ∈ Z[t] is finite and the order from U is induced on it. Thus one can
associate with Γ an ordered set U(Γ) = {u1, . . . , uN}, where N > 0, ui ∈ U, i ∈
[1, N ] and ui < uj if i < j. Observe that U(Γ) can be empty in case when all edges
of Γ are labeled by letters from X±.

Definition 4.4. Let Γ be a finite (Z[t], X)-graph and let ui ∈ U(Γ) be fixed. Let
Γ(i) be a subgraph of Γ which consists only of edges e ∈ E(Γ) such that either
µ(e) = w ∈ X± or µ(e) = uα

j , α ∈ Z[t], j ≤ i. We call Γ(i) an i-level graph of
Γ (by 0-level graph we understand a subgraph of Γ which consists only of edges
with labels from X) and say that Γ has level n denoted by l(Γ) if n is the minimal
natural number for which Γ = Γ(n).

Observe that Γ(i) may be not connected for some i < l(Γ), but still one can
apply to Γ(i) free foldings and u-foldings u ∈ U(Γ).

Definition 4.5. Let Γ be a finite connected (Z[t], X)-graph and let U(Γ) =
{u1, . . . , ul(Γ)}. If un ∈ U(Γ) and C is a un-component of Γ then

(1) a path p in Γ(n−1) is called (un, δ)-irregular of type I if o(p) ∈ V (C), µ(p) = w,

w = uδ
n ◦ cp, δ ∈ {1,−1},

(2) a path p in Γ(n) is called (un, δ)-irregular of type II if p = pΓ(n−1) pΓ(n), o(p) ∈
V (C), pΓ(n−1) ∈ Γ(n − 1), µ(pΓ(n−1)) = w1, µ(pΓ(n)) = w2 ◦ c = uγ

n ◦ c1, γ ∈
Z[t] − Z, uδ

n = w1 ◦ w2, w2 �= ε, δ ∈ {1,−1},
(3) a path p in Γ(n−1) is called (un, δ)-irregular of type III if o(p) ∈ V (C), µ(p) =

w1(p), uδ
n = w1(p) ◦ w2(p), w2(p) �= ε, δ ∈ {1,−1} and there exists a path p′

in C such that o(p′) = o(p), µ(p′) = uγ
n, γ ∈ Z[t], γδ > 0.
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Definition 4.6. Let Γ be a finite connected (Z[t], X)-graph and let U(Γ) =
{u1, . . . , ul(Γ)}. If un ∈ U(Γ) and C is a un-component of Γ then

(1) a (un, δ)-irregular path p of type I originating from v is doubled if there exists
a label reduced path q = q1q2 in ∆(n − 1) such that o(q) = v, t(q) = t(q2) =
t(p), µ(q) = µ(p), µ(q1) = π(un)δ, t(q1) ∈ V (C),

(2) a (un, δ)-irregular path p of type II originating from v is doubled if there exists
a label reduced path q = q1q2 in ∆(n) such that o(q) = v, t(q) = t(q2) =
t(p), µ(q) = µ(p), µ(q1) = π(un)δ, t(q1) ∈ V (C),

(3) a (un, δ)-irregular path p of type III originating from v is doubled if there exists
a label reduced path q = q1q2 in ∆(n − 1) such that o(q) = v, t(q) = t(q2) =
t(p), µ(q) = µ(p), µ(q1) = π(w1(p)), µ(q2) = π(w2(p)), t(q) ∈ V (C).

Definition 4.7. Let ∆ be a finite connected (Z[t], X)-graph and let U(∆) =
{u1, . . . , ul(∆)}. ∆ is called U -folded if for any un ∈ U(∆) the following conditions
are satisfied:

(1) ∆ is partially folded;
(2) all un-components of ∆ are un-folded and isolated in the sense that there exists

no reduced path p with µ(p) = uk
n, k ∈ Z in ∆(n− 1) such that p connects two

different un-components of ∆;
(3) if C is a un-component of ∆, e ∈ E(PC) and µ(e) = uk

n, k ∈ Z then there
exists a unique label reduced path p in ∆(n − 1) such that o(p) = o(e), t(p) =
t(e), µ(p) = π(un)k;

(4) if C is a un-component of ∆ and v ∈ V (C) ∩ V (∆(n − 1)) then there exists
a unique label reduced path p in ∆(n − 1) such that o(p) = t(p) = v, µ(p) =
π(un)k, k ∈ Z and Hun(zC) ∩ 〈un〉 = 〈uk

n〉;
(5) if C is a un-component of ∆ and v1, v2 ∈ V (C) are connected by a reduced

subpath p of PC then either p consists only of edges labeled by finite exponents
of un or there exists no number kp ∈ Z such that µ(p) ∗ u−kp ∈ Hun(zC);

(6) for any un-component C of ∆ and its distinct vertices v1, v2 which are con-
nected by a reduced subpath p of PC with o(p) = v1, t(p) = v2 there exists no
reduced path r in ∆(n − 1) such that o(r) = v1, t(r) = v2, µ(r) = uk

n, k ∈ Z

and µ(p) ∗ µ(r)
−1

/∈ Hun(v1);
(7) for any un-component C of ∆, v ∈ V (C) and a reduced path p in ∆(n − 1)

such that o(p) = v, µ(p) = uk
n, k ∈ Z it follows that t(p) ∈ V (C);

(8) for any un-component C of ∆ and its vertex v any (un, δ)-irregular path p of
any type originating from v is doubled in ∆(n).

Remark 4.8. Observe that in (3) and (4) by uniqueness we understand uniqueness
with respect to PC , where C is any u-component u ∈ U(∆), that is, a path is
unique if we disregard the order of edges in C − PC . This is justified in view of
Lemma 3.18.
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The definition above is very technical and it is not clear why we need all the
properties listed. However, using them in the proof of the next proposition we are
able to show the most essential properties of U -folded graphs.

Proposition 4.9. Let ∆ be a U -folded graph. Then the following hold:

(1) for any reduced path p in ∆ with µ(p) = w there exists a unique label reduced
path q such that o(q) = o(p), t(q) = t(p), µ(q) = π(w);

(2) for the standard decomposition π(g) of any g ∈ F Z[t] and any v ∈ V (∆), either
there exists a unique label reduced path p in ∆ starting at v such that µ(p) = π(g)
or for any path q in ∆ starting at v it follows that µ(q) �= g.

Proof. We take advantage of the level structure of ∆ — the proof is conducted
by the induction on l(∆). If l(∆) = 0, that is, all edges in ∆ are labeled by letters
from X±, then ∆ is partially folded and the statement of the proposition follows
from [4, Lemma 3.9].

Assume that the statement of the theorem holds for any graph of level n − 1.
Let l(∆) = n and let U(∆) = {u1, . . . , ul(∆)}.

(1) Let p be a path in ∆ with µ(p) = w. µ(p) belongs to the alphabet X±∪{uα |
u ∈ U(∆), u ≤ un, α ∈ Z[t]} so let us subdivide p in the following way:

p = p1d1p2d2 · · · pmdmpm+1,

where every pi, i ∈ [1, m + 1] does not contain edges labeled by uα
n, α ∈ Z[t], so

that we can assume every pi to be a path in ∆(n − 1), and every di, i ∈ [1, m]
contains only edges labeled by uα

n, α ∈ Z[t].
Take any pi. By induction there exists a unique label reduced path qi such

that o(pi) = o(qi), t(pi) = t(qi), µ(qi) = π(hi), where µ(pi) = hi. Observe that
since t(pi) belongs to some un-component Ci and di is a path composed only of
edges labeled by exponents of un then di is a path in Ci such that µ(di) = uαi

n .
By Lemma 3.18 there exists a unique path ci in PCi such that o(ci) = o(di) and
uαi

n ∈ µ(ci) ∗ Hun(o(di)). We have t(di) = t(ci). Indeed, if di leads to some other
vertex v ∈ PCi then there exists a unique positively oriented subpath pv of PCi

from o(di) to v and we have a loop pvd
−1
i , so µ(pv) ∗ u−αi

n ∈ Hun(o(di)). Thus,
uαi

n = µ(pv) ∗hi, hi ∈ Hun(o(di)) and µ(pv) ∈ µ(ci)∗Hun(o(di)) which is impossible
unless pv = ci, because Ci is un-reduced. So t(di) = t(ci) = o(pi+1).

Thus, we obtain a reduced path r as the following concatenation:

q′ = q1c1q2c2 · · · qmcmqm+1,

where o(qi) = o(pi), t(qi) = t(pi), o(ci) = o(di), t(ci) = t(di), µ(qi) = µ(pi) ,
µ(ci) = µ(di) = uαi

n , i ∈ [1, m + 1] and o(q′) = o(p), t(q′) = t(p), µ(q′) = µ(p) and
all qi, ci are label reduced.

However, q′ may be not label reduced, that is, there can be a cancellation in
µ(ci)∗µ(qi+1). Without loss of generality we can assume αi � 0 (if not then by the
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property (3) of U -folded graphs we can assume picipi+1 to be a path in ∆(n − 1)
and everything follows by induction for picipi+1).

Suppose µ(ci) ∗ µ(qi+1) �= µ(ci) ◦ µ(qi+1). Then µ(qi+1) contains an initial sub-
word uk

n ◦ g1, k < 0, u−1
n = g1 ◦ g2. ∆(n− 1) is U -folded and the induction hypoth-

esis holds for it, hence it follows that there exists a path ri+1 = zi+1fi+1 such that
o(ri+1) = o(qi+1), t(ri+1) = t(qi+1), o(zi+1) = v1 ∈ V (Ci), µ(zi+1) = π(un)kπ(g1)
and it can be continued by a path z′ to some vertex v2 ∈ V (Ci) so that zi+1z

′

is a label reduced path from v1 to v2. Let wi+1 be the path in PCi such that
o(wi+1) = v1, t(wi+1) = v2. Then we have that concatenation wi+1z

′−1 is a path
from t(ci) = o(qi+1) = o(zi+1) to t(zi+1) = o(fi+1) and µ(wi+1z′−1) = µ(zi+1) =
uk

n◦g1. So we can substitute qi+1 by wi+1z
′−1

fi+1 in q. Observe that µ(z′−1) = g−1
2

and z′−1
fi+1 is label reduced otherwise uk

n ◦ g1 is not the maximal initial subword
of µ(qi+1) which cancels in µ(ci) ∗ µ(qi+1). Also, un ∗ g−1

2 = un ◦ g−1
2 .

Thus, ciqi+1 becomes ciwi+1z
′−1

fi+1. We can find a unique label reduced path
bi in Ci which corresponds to ciwi+1 and then biz

′−1
fi+1 is label reduced.

If µ(qi) ∗ µ(ci) �= µ(qi) ◦ µ(ci) then we can substitute qi by fiz
′′−1

wi and using
the same argument as above show that we obtain a label reduced path fiz

′′−1
bi

which corresponds to qici.
After finitely many such substitutions we get a label reduced path q such that

o(q) = o(p), t(q) = t(p), µ(q) = µ(p) = w. Finally, using the property (8) one
can construct a unique label reduced path q′ such that o(q′) = o(p), t(q′) =
t(p), µ(q′) = π(w).

(2) Let g ∈ F Z[t] be such that

π(g) = π(h1)uα1π(h2) · · ·uαmπ(hm+1).

If u < un then (2) follows by induction. Suppose u = un. By induction either
there exists a unique label reduced path p1 in ∆(n − 1) for h1 originating from
v ∈ ∆(n) such that µ(p1) = π(h1) or for any path q1 in ∆7 originating from
v it follows that µ(q1) �= h1. In the latter case there exists no path p for g

such that µ(p) = g, because if it exists then by (1) there exists a unique path
q such that o(q) = o(p), t(q) = t(p), µ(q) = π(g). But q contains an initial
subpath q1 originating from v with the label µ(q1) = π(h1) — a contradiction.
In the former case we continue with uα1 . Since t(p1) belongs to some u-component
C1 of ∆(n) then by Lemma 3.18 either there exists a unique path c1 in PC1 such
that o(ci) = t(p1) and uαi ∈ µ(c1) ∗ Hu(o(ci)) or there exists no continuation of p1

in C1 which is labeled by uαi . Again, if this continuation does not exist then there
exists no required path for g, if it does exist then we continue. After at most 2m+1
number of steps we get the required result. This completes the proof of (2) and the
proposition.

In order to prove the main technical result of this section we need several
lemmas.
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Lemma 4.10. Let Γ be a finite U -folded (Z[t], X)-graph such that U(∆) =
{u1, . . . , ul(∆)} and let u ∈ U be such that u > ul(∆). If v ∈ V (Γ) and there
exists a path p in Γ such that o(p) = v, µ(p) = π(u±k), k ∈ N then there exists a
path q in Γ such that o(q) = v, µ(q) = π(u±1).

Proof. By the choice of U we have π(u2) = π(u) π(u) = π(u)2. Hence, it implies
that a path in Γ originating from v and labeled by π(uk), k ∈ N contains an initial
subpath labeled by π(u).

On the other hand, let p be a path in Γ such that o(p) = v, µ(p) = π(u−k),
k ∈ N. Thus, we have a path p−1 originating from t(p) such that µ(p−1) = uk.
Since Γ is U -folded it follows that there exists a path r in Γ such that o(r) =
t(p), µ(r) = π(uk). By the choice of U we have π(uk) = π(u)k and hence r contains
a terminal subpath r1 such that t(r1) = v, µ(r1) = π(u). Thus, for r−1

1 we have
o(r−1

1 ) = v, µ(r−1
1 ) = u−1. Finally, since Γ is U -folded there exists a path q such

that o(q) = v, µ(q) = π(u−1).

Lemma 4.11. Let Γ be a finite (Z[t], X)-graph such that U(Γ) = {u1, . . . , ul(Γ)}.
Let un ∈ U(Γ), C be a un-component of Γ, v ∈ V (C). Suppose Γ(n−1) is U -folded.
If there exists a path p in Γ(n − 1) such that o(p) = v, µ(p) = uk

n ◦ c, k ∈ Z then
there exists a path r = r1r2 in Γ(n) such that o(r) = o(p), t(r) = t(p), µ(r) =
µ(p), r1 ∈ Γ(n − 1), µ(r1) = π(un)l, |k| = |l| + 1, t(p1) ∈ V (C) and r2 is a
(un, δ)-irregular path of type I or II, where δk > 0.

Proof. Without loss of generality we can assume that k > 0 and also that un−1 =
max{U(un)}. Hence

un = h1 ◦ uα1
n−1 ◦ h2 ◦ · · · ◦ uαm

n−1 ◦ hm+1,

where m ≥ 1 and

π(un) = π(h1)uα1
n−1π(h2) · · ·uαm

n−1π(hm+1).

Since π(un ◦ un) = π(un) π(un) then

π(uk
n ◦ c) = (π(h1)uα1

n−1π(h2) · · ·uαm
n−1π(hm+1))k−1π(h1)uα1

n−1

× π(h2) · · ·π(uαm
n−1 ◦ hm+1 ◦ c).

Since Γ(n− 1) is U -folded then by Proposition 4.9 there exists a path r in Γ(n− 1)
such that o(r) = o(p), t(r) = t(p), µ(r) = π(uk

n ◦ c). Hence, there exists an initial
subpath r1 of r such that t(r1) ∈ V (C) and

µ(r1) = (π(h1)uα1
n−1π(h2) · · ·uαm

n−1π(hm+1))k−1,

and the initial subpath r2 of r such that r = r1r2 is a (un, δ)-irregular path of
type I, where δk > 0.
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Lemma 4.12. Let Γ be a finite (Z[t], X)-graph such that U(Γ) = {u1, . . . , ul(Γ)}.
Let un ∈ U(Γ), C be a un-component of Γ, v ∈ V (C). Suppose

(1) Γ(n − 1) is U -folded,

(2) Γ(n) satisfies the conditions (1)–(7)
(3) there exists a path p in Γ(n) such that o(p) = v, µ(p) = uk

n ◦ c, k ∈ Z and c

does not have u±1
n as an initial segment.

Then there exists a path r = r1r2 in Γ(n) such that o(r) = o(p), t(r) = t(p), µ(r) =
µ(p), r1 ∈ Γ(n − 1) and one of the following holds:

(1) µ(r1) = uk
n ◦ c1,

(2) µ(r1) = π(un)l, |l| = |k| − 1, t(r1) ∈ V (C) and r2 is a (un, δ)-irregular path of
type II, where δk > 0.

Proof. Without loss of generality we can assume that k > 0.
Let p1 be the maximal initial subpath of p which does not contain edges labeled

by uα
n, α ∈ Z[t]−Z. Since Γ(n) satisfies the conditions (1)–(7) then we can assume

that p1 ∈ Γ(n − 1). If µ(p1) = uk
n ◦ c1 then we are done. Suppose on the contrary

that µ(p1) = ul
n ◦ w1 and l < k. Hence, un = w1 ◦ w2. If l < k − 1 then we have a

contradiction since we obtain w1 ◦ w2 = w2 ◦ w1. Thus, l = k − 1.
Since Γ(n − 1) is U -folded then by Proposition 4.9 there exists a path q in

Γ(n − 1) such that o(q) = o(p1), t(q) = t(p1), µ(q) = π(ul
n ◦ w1). On the other

hand we have

π(ul
n ◦ w1) = π(ul

n)π(w1),

so q can be subdivided as q = q1q2 so that µ(q1) = π(ul
n) = π(un)l, µ(q2) = π(w1).

Finally, if p2 is such that p = p1p2 then we set r1 = q1 and r2 = q2p2. Observe
that t(r1) ∈ V (C) because Γ(n) satisfies the conditions (1)–(7) and r2 is a (un, δ)-
irregular path of type II, where δ = 1.

Proposition 4.13. Let Γ be a finite connected (Z[t], X)-graph. Then there exists
a U -folded (Z[t], X)-graph ∆ which is obtained from Γ by a finite sequence of free
and u-foldings. Moreover ∆ can be found effectively.

Proof. To prove the proposition we use the induction on l(Γ). If l(Γ) = 0, that
is, all edges in Γ are labeled by letters from X±, then by Lemma 3.6 using finitely
many free foldings one can obtain from Γ a partially folded (Z[t], X)-graph ∆ which
satisfies all the conditions (1)–(8) since it does not contain u-components.

Assume that the statement of the theorem holds for any graph of level n − 1.
Let l(Γ) = n and let U(Γ) = {u1, . . . , un}.

We construct a (Z[t], X)-graph ∆ from Γ in several steps which are described
in the series of claims below.

Claim 4.14. Let Φ be a (Z[t], X)-graph such that l(Φ) = n and U(Φ) =
{u1, . . . , un}. By finitely many free and u-foldings, where u ∈ U(Φ), one can
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transform Φ into a (Z[t], X)-graph Φ0 such that Φ0(n − 1) is U -folded and all
un-components of Φ0 are un-folded.

Proof of Claim 4.14. Let C1, . . . , CK , K ∈ N be the list of all un-components
of Φ. Using finitely many un-foldings every Ci can be transformed into a un-
folded un-component independently of all other Cj , j �= i. Observe that after all
these transformations in the resulting graph Φ′ we can have that Φ′(n − 1) is not
U -folded any more. But this can happen only if two vertices of Φ(n− 1) have been
identified, that is, if performed un-foldings have decreased the number of vertices
in the un-components and

K∑
i=1

|V (Ci)| <

K∑
i=1

|V (C′
i)|,

where C′
i is a un-component of Φ′ which is obtained from Ci. By the induction

hypothesis we transform Φ′ into a new (Z[t], X)-graph so that Φ′(n − 1) trans-
forms into Φ′(n−1) which is U -folded. Correspondingly, C′

1, . . . , C
′
K transform into

C′′
1 , . . . , C′′

K and a un-component C′′
i , i ∈ [1, K] can be not un-folded only if two

vertices of C′
i have been identified while transforming Φ′ into Φ′′. In this case again

we have
K∑

i=1

|V (C′
i)| <

K∑
i=1

|V (C′′
i )|.

Both inequalities above show that in a finite number of steps we obtain a (Z[t], X)-
graph Φ0 such that Φ0(n−1) is U -folded and all un-components of Φ0 are un-folded.
The claim is proved.

Claim 4.15. Let Φ be a (Z[t], X)-graph such that l(Φ) = n and U(Φ) =
{u1, . . . , un}. Adding finitely many edges to Φ and using finitely many free and
u-foldings, where u ∈ U(Φ) one can transform Φ into a (Z[t], X)-graph Φ0 such that

(a) Φ0 satisfies (1)–(3),
(b) Φ0(n − 1) is U -folded,

(c) if v ∈ V (Φ) and v0 ∈ V (Φ0) corresponds to v then L(Φ, v) = L(Φ0, v0).

Proof of Claim 4.15. By Claim 4.14 we can assume Φ(n− 1) to be U -folded and
all un-components of Φ to be un-folded.

For any edge e ∈ E(Φ) such that µ(e) = uke
n , ke ∈ Z we add to Φ a new path pe

such that o(pe) = o(e), t(pe) = t(e), µ(pe) = π(un)ke . The graph thus obtained we
denote by Φ′. Obviously L(Φ, v) ⊆ L(Φ′, v). On the other hand observe that any
reduced path p in Φ′ which contains at least one new edge also has a subpath pe

such that there exists e ∈ E(Φ) and o(e) = o(pe), t(e) = t(pe), µ(e) = µ(pe). Thus,
substituting pe by e and continuing by the induction on the number of new edges
in p one obtains a path p′ in Φ such that o(p′) = o(p), t(p′) = t(p), µ(p′) = µ(p).
Hence, L(Φ′, v) ⊆ L(Φ, v).
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Using the induction hypothesis and Claim 1, we obtain a new graph Φ′′ such
that Φ′′(n−1) is U -folded and all its un-components are un-folded. Observe that if
there exists e ∈ E(Φ′′) such that µ(e) = uk

n, k ∈ Z and there exists no path pe such
that o(pe) = o(e), t(pe) = t(e), µ(pe) = π(un)k then it means that transformation
of Φ′ into Φ′′ has affected un-components of Φ′, that is,

K∑
i=1

|V (C′′
i )| <

K∑
i=1

|V (C′
i)|,

where C′
1, . . . , C

′
K , K ∈ N is the list of all un-components of Φ′ and C′′

1 , . . . , C′′
K are

the corresponding un-components of Φ′′. Hence, continuing the operation described
above we can obtain a graph with the required property and in fact we can assume
Φ′′ to be such a graph. However, un-components of Φ′′ may be not isolated.

Let Θ be a connected component of Φ′(n − 1) which contains C′′
1 and let z ∈

V (Φ′(n−1))∩V (C′′
1 ). By Lemma 4.10, since Θ is finite we can find all vertices of Θ

which are connected with z by paths labeled by finite exponents of un. Denote the
set of these vertices by VC′′

1
. Suppose there exists z′ ∈ VC′′

1
∩C′′

j , j ∈ [1, K], j �= 1.
Hence C′′

1 and C′′
j are connected by a path p such that o(p) = z, t(p) = z′, µ(p) =

π(un)k, k ∈ Z. Hence we add to Φ′′ an edge ep labeled by uk
n and reduce by this

the number of un-components of Φ′′. Since this number is finite then using the
considerations above we obtain a new graph Φ0 with the properties (1)–(3). The
claim is proved.

Claim 4.16. Let Φ0 be the (Z[t], X)-graph obtained in Claim 4.15. Adding finitely
many edges to Φ0 one can transform Φ0 into a new (Z[t], X)-graph Φ1 such that

(a) Φ1 satisfies (1)–(3),
(b) Φ1(n − 1) is U -folded,

(c) if v0 ∈ V (Φ0) and v1 ∈ V (Φ1) corresponds to v0 then L(Φ1, v1) = L(Φ0, v0),
(d) if C is a un-component of Φ1, v ∈ V (C) and there exists a loop p in Φ1(n− 1)

at v such that µ(p) = uk
n, k ∈ N then uk

n ∈ Hun(zC).

Proof of Claim 4.16. Let C1, . . . , CK , K ∈ N be the list of all un-components
of Φ0. Let Θ be a connected component of Φ0(n − 1) which contains C1 and let
z ∈ V (Φ0(n−1))∩V (C1). Suppose there exists a loop p in Θ at z such that µ(p) =
uk

n, k > 0 (observe that we can check this effectively in view of Lemma 4.10). Since
Φ0(n−1) is U -folded we can assume that µ(p) = π(un)k and k is minimal possible. If
uk

n /∈ Hun(z) then we add to Φ0 a new edge e such that o(e) = t(e) = z, µ(e) = uk
n.

Let Φ′
0 be the resulting graph. Then V (Φ′

0) = V (Φ0) and it is easy to see that for
any v ∈ V (Φ0) we have L(Φ′

0, v) = L(Φ0, v). Moreover, Φ′
0 satisfies (1)–(3)

Let

M1(Φ0) =
K∑

i=1

li,
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where Hun(zCi) ∩ 〈un〉 = 〈uli
n 〉, li > 0 and i ∈ [1, K], and

M2(Φ0) = |{Ci | Hun(zCi) ∩ 〈un〉 = ε, vi ∈ V (Ci), i ∈ [1, K]}|.
The same characteristics can be introduced for Φ′

0 as well and considering ordered
pairs (M1(Φ0), M2(Φ0)) and (M1(Φ′

0), M2(Φ′
0)) we have that

(M1(Φ′
0), M2(Φ′

0)) < (M1(Φ0), M2(Φ0))

with respect to the right lexicographic order. Indeed, if Hun(zC1) ∩ 〈un〉 = ε then
M1(Φ′

0) < M1(Φ0) and (M1(Φ′
0), M2(Φ′

0)) < (M1(Φ0), M2(Φ0)). If Hun(zC1) ∩
〈un〉 = 〈ul1

n 〉, l1 > 0 then M1(Φ′
0) = M1(Φ0). Let H be a free abelian group associ-

ated with the un-component C1 ∪ {e} of Φ′
0. Then H ∩ 〈un〉 = 〈ul′1

n 〉 and obviously
l1 > l′1. Hence, M2(Φ′

0) < M2(Φ0) and (M1(Φ′
0), M2(Φ′

0)) < (M1(Φ0), M2(Φ0)).
The operation described above can be applied to all un-components of Φ0 and

to all their vertices which also belong to Φ0(n−1). The convergence of this process
follows from the fact that M2(Ψ) is bounded for any (Z[t], X)-graph Ψ and M1(Ψ)
is bounded for any fixed value of M2(Ψ). After the process stops we obtain the
required graph Φ1. The claim is proved.

Claim 4.17. Let Φ be a (Z[t], X)-graph such that l(Φ) = n and U(Φ) =
{u1, . . . , un}. Adding finitely many edges to Φ one can transform it into a (Z[t], X)-
graph Φ0 such that

(a) Φ0 satisfies (1)–(4),
(b) Φ0(n − 1) is U -folded,

(c) if v ∈ V (Φ) and v0 ∈ V (Φ0) corresponds to v then L(Φ0, v0) = L(Φ, v).

Proof of Claim 4.17. Applying Claims 4.15 and 4.16 to Φ we obtain a new graph
Φ′ which has the properties listed in Claim 4.16. It follows from the proofs of the
claims above that either Φ′ = Φ or

(M1(Φ′), M2(Φ′), M3(Φ′), M4(Φ′)) < (M1(Φ), M2(Φ), M3(Φ), M4(Φ))

with respect to the right lexicographic order, where M3(Ψ) is the total number of
vertices in un-components of Ψ and M4(Ψ) is the number of un-components of Ψ.

Let C be a un-component of Φ′. If Hun(zC)∩〈un〉 = u
k(C)
n , k(C) > 0 then for any

v ∈ V (C) we add to Φ′ a loop pv such that o(pv) = t(pv) = v, µ(pv) = π(un)k(C).
This operation can be performed for all un-components of Φ′ and let Φ′′ be the

resulting graph. It is clear that

(M1(Φ′′), M2(Φ′′), M3(Φ′′), M4(Φ′′)) = (M1(Φ′), M2(Φ′), M3(Φ′), M4(Φ′)).

If Φ′′(n − 1) is not U -folded then by iterating application of Claims 4.14–4.16
eventually we obtain the graph Φ0 with the properties (1)–(4) such that Φ0(n− 1)
is U -folded. The claim is proved.
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Fig. 4. Getting properties (1)–(4).

Claim 4.18. Let Φ be a (Z[t], X)-graph such that l(Φ) = n and U(Φ) =
{u1, . . . , un}. Adding and eliminating finitely many edges to Φ one can transform
it into a (Z[t], X)-graph Φ0 such that

(a) Φ0 satisfies (1)–(5),
(b) Φ0(n − 1) is U -folded,

(c) if v ∈ V (Φ) and v0 ∈ V (Φ0) corresponds to v then L(Φ0, v0) = L(Φ, v).

Proof of Claim 4.18. In view of Claim 4.17 we can assume that Φ satisfies (1)–(5)
and Φ(n − 1) is U -folded.

Let C be a un-component in Φ. Since C is un-folded then by definition there
exists a positively-oriented path PC associated with C such that V (C) = V (PC).
Let v1, v2 ∈ V (C), v1 �= v2. Consider the following possibilities.

Suppose the subpath p = e1 · · · ek of PC is such that o(p) = v1, t(p) = v2

contains an edge labeled by an infinite exponent of un, say ej and suppose there
exists an integer kp such that µ(p) ∗u

−kp
n ∈ Hun(ZC). If Hun(zC) ∩ 〈un〉 = ε then

such kp is unique, while if Hun(v1) ∩ 〈un〉 �= ε then there are infinitely many r ∈ Z
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Fig. 5. Getting the property (5) (α � 0).

such that µ(p) ∗ u−r ∈ Hun(zC) all of which belong to the coset ukp ∗ (Hun(zC) ∩
〈un〉) and this ensures that it does not matter which one of them is chosen. Thus,
we add to C an edge e such that o(e) = v1, t(e) = v2, µ(e) = u

kp
n but eliminate an

edge ej from PC . Observe that this operation does not change Hun(zC). Moreover,
if we denote the resulting graph by Φ′ then V (Φ′) = V (Φ) and for any v ∈ V (Φ)
we have L(Φ′, v) = L(Φ, v). In addition, obviously M1(Φ′) = M1(Φ), M2(Φ′) =
M2(Φ), M3(Φ′) = M3(Φ), M4(Φ′) = M4(Φ).

Let

M5(Ψ) =
K∑

i=1

m(Ci),

where C1, . . . , CK are un-components of Ψ and m(Ci) is the number of edges labeled
by infinite exponents of un in PCi , i ∈ [1, K]. Then (M1(Φ′), M2(Φ′), M3(Φ′),
M4(Φ′), M5(Φ′)) < (M1(Φ), M2(Φ), M3(Φ), M4(Φ), M5(Φ)) with respect to the
right lexicographic order. It follows that using the operation described above one
can minimize the number of edges of Φ labeled by infinite exponents of un in all
un-components of Φ. If necessary one can iterate the process together with the
claims above to obtain the required graph Φ0. The claim is proved.

Claim 4.19. Let Φ be a (Z[t], X)-graph such that l(Φ) = n and U(Φ) =
{u1, . . . , un}. Adding and eliminating finitely many edges to Φ one can transform
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it into a (Z[t], X)-graph Φ0 such that

(a) Φ0 satisfies (1)–(6),
(b) Φ0(n − 1) is U -folded,

(c) if v ∈ V (Φ) and v0 ∈ V (Φ0) corresponds to v then L(Φ0, v0) = L(Φ, v).

Proof of Claim 4.19. In view of Claim 4.18 we can assume that Φ satisfies (1)–(5)
and Φ(n − 1) is U -folded.

Let C be a un-component in Φ. Since C is un-folded then by definition there
exists a positively-oriented path PC associated with C such that V (C) = V (PC).
Let v1, v2 ∈ V (C), v1 �= v2.

Suppose there exists a reduced path r in Φ(n−1) such that o(r) = v1, t(r) = v2

and µ(r) = ul
n, l > 0. Since Φ(n−1) is U -reduced by Proposition 4.9 we can assume

r to be label reduced and µ(r) = π(un)l. Then, there exists a unique label reduced
path q in Φ(n − 1) such that o(q) = v1, t(q) = v2 and µ(q) = π(un)k, l ≥ k > 0
and for any two initial subpaths q1, q2 of q such that µ(q1) = π(un)k1 , µ(q2) =
π(un)k2 , k1 < k2 < k we have t(q1) �= t(q2).

Since v1, v2 ∈ V (C) then there exists a reduced subpath p of PC such that
o(p) = v1, t(p) = v2, µ(p) = uα

n, α ∈ Z[t].
If p consists only of edges labeled by finite exponents of un then from the

properties (3) and (4) of Φ and from the fact that Φ(n − 1) is U -folded it follows
that there exists a unique label reduced path p′ in Φ(n − 1) such that o(p′) =
o(p), t(p′) = t(p), µ(p′) = π(un)α. Hence, o(q) = o(p′), t(q) = t(p′). If p is positive
then so is p′ and we have µ(p′) = µ(q), otherwise we have a contradiction either with
the choice of q or with the fact that Φ(n− 1) is U -folded. Thus, by Proposition 4.9
we have q = p′. If p is negative then p′ is also negative and we have a positively
oriented loop in Φ(n−1) at v1 which is a concatenation qp′−1 so µ(qp′−1) ∈ Hun(zC)
otherwise a contradiction with (4).

Thus, we can assume that p contains an edge labeled by an infinite exponent
of un. Then µ(p) ∗ µ(q)

−1
/∈ Hun(zC) otherwise we have a contradiction with (5).

So we add to C an edge e labeled by uk
n such that o(e) = v1, t(e) = v2. Denote

the resulting graph by Φ′. Observe that after the performed operation the new un-
component C ∪{e} may not be un-folded. Applying Claim 5 to Φ′ we obtain a new
graph Φ′′ and it follows from the proof of Claim 5 that (M1(Φ′′), M2(Φ′′), M3(Φ′′),
M4(Φ′′), M5(Φ′′)) < (M1(Φ′), M2(Φ′), M3(Φ′), M4(Φ′), M5(Φ′)) with respect to
the right lexicographic order. Hence, after finitely many iterations of the process
described above we obtain the required graph Φ0. The claim is proved.

Claim 4.20. Let Φ be a (Z[t], X)-graph such that l(Φ) = n and U(Φ) =
{u1, . . . , un}. Adding and eliminating finitely many edges to Φ one can transform
it into a (Z[t], X)-graph Φ0 such that

(a) Φ0 satisfies (1)–(7),
(b) Φ0(n − 1) is U -folded,

(c) if v ∈ V (Φ) and v0 ∈ V (Φ0) corresponds to v then L(Φ0, v0) = L(Φ, v).
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Proof of Claim 4.20. In view of Claim 4.19 we can assume that Φ satisfies (1)–(6)
and Φ(n − 1) is U -folded.

Let C be a un-component in Φ. Using Lemma 4.10 we find all paths labeled by
π(un)m, m ∈ Z in Φ(n − 1) which originate from vertices of C. The endpoints of
these paths compose a finite set S.

Let v1 ∈ V (C) and suppose there exists a reduced path r in Φ(n− 1) for which
o(r) = v1, t(r) = v2, v2 ∈ S− /∈ V (C) and µ(r) = ul

n, l ∈ Z. Since Φ(n − 1) is U -
reduced by Proposition 4.9 we can assume r to be label reduced and µ(r) = π(un)l.
Also, without loss of generality we can assume l > 0. Then, there exists a unique
label reduced path p in Φ(n − 1) for which we have o(p) = v1, t(p) = v2 and
µ(p) = π(un)k, l ≥ k > 0 and such that for any two initial subpaths p1, p2 of p

such that µ(p1) = π(un)m1 , µ(p2) = π(un)m2 , m1 < m2 < k we have t(p1) �= t(p2).
Let us denote ai = t(pi), where pi is an initial subpath of p such that µ(pi) =
π(un)i, i ∈ [1, k].

If uk
n ∈ Hun(zC) then by Proposition 4.9 there exists a unique label reduced

cycle q at v1 in Φ(n − 1) labeled by the generator of Hun(zC) ∩ 〈un〉. Hence p = q

because of the choice of p and the fact that Φ(n − 1) is U -folded. So v1 = v2 —
contradiction. Hence uk

n /∈ Hun(zC).
Let v be any vertex in V (C) and let qv = e1 · · · em be a label reduced subpath

of PC such that o(qv) = v, t(qv) = v1, µ(ei) = uαi
n , i ∈ [1, m] (qv exists since C is

un-reduced).
(i) Suppose there exists v ∈ V (C) such that µ(qv) ∗ uk

n ∈ Hun(zC). Then all
edges in qv are labeled by finite exponents of un — otherwise (5) breaks for Φ and
we have a contradiction. Finally, since Φ has properties (3) and (4) and Φ(n − 1)
is U -folded it means that p connects two vertices in C and, hence, v2 ∈ C —
contradiction.

(ii) Suppose for any v ∈ V (C) we have µ(qv) ∗ uk
n /∈ Hun(zC). Then we add

to C a path f1f2 · · · fk so that o(f1) = v1, t(fi) = o(fi+1) = ai, i ∈ [1, k −
1], t(k) = v2, µ(fi) = un, i ∈ [1, k]. Applying k un-foldings we fold f1f2 · · · fk with
PC and the obtained un-component is un-folded because of our assumption on k.
If we denote resulting graph by Φ′ then Φ′(n − 1) is U -folded because v2 has not
been identified with any vertex of Φ and Φ′ has the properties (1)–(6). Also we
have M5(Φ′) = M5(Φ), although M3(Φ′) = M3(Φ) + k.

Since S is finite then applying the operation described above we add to C all
vertices from S and the same can be done for all un-components of Φ. On each
step the resulting graph has the properties (1)–(6) and its n − 1-level is U -folded.
In finitely many steps we get a the required graph Φ0. The claim is proved.

Claim 4.21. Let Φ be a (Z[t], X)-graph such that l(Φ) = n and U(Φ) =
{u1, . . . , un}. Suppose Φ(n − 1) is U -folded and Φ satisfies (1)–(7). Let C be a
un-component of Φ, v ∈ V (C) and let p be a (un, δ)-irregular path p of type I
originating from v. Then either p is doubled in Φ(n − 1) or there exists a path
r = r1r2 in Φ(n − 1) such that o(r) = o(p), t(r) = t(p), µ(r) = µ(p),
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µ(r1) = π(h1)uα1
n−1π(h2) · · ·π(hm), µ(r2) = uαm

n−1 ◦ hm+1 ◦ c, uγ
n−1 = hm+1 ◦ u′,

where γ ∈ {1,−1}, αmγ > 0 and

π(un)δ = π(h1)uα1
n−1π(h2) · · ·uαm

n−1π(hm+1).

Proof of Claim 4.21. Without loss of generality we can assume δ = 1. Let

p = d1p1d2 · · · dkpkdk+1,

where pi is a path in some un−1-component of Φ(n−1) and di is a path in Φ(n−1)
which does not contain edges labeled by uα

n−1, α ∈ Z[t]. We can assume that there
exists no initial subpath d′i of dipi · · · dkpkdk+1 such that µ(d′i) = u±1

n−1 and there
exists no terminal subpath d′′i of di such that µ(d′′i) = u±1

n−1 — otherwise, since
Φ(n − 1) is U -folded, by induction we can assume that t(d′i) and o(d′′i) belong to
some un−1-components and there exist edges e′, e′′ such that o(e′) = o(d′i), t(e′) =
t(d′i), µ(e′) = u±1

n−1, o(e′′) = o(d′′i), t(e′′) = t(d′′i), µ(e′′) = u±1
n−1, so that we can

substitute d′i, d′′i by e′, e′′ correspondingly and consider the path p′ obtained from
p by such substitutions. Let µ(pi) = uβi

n−1.
Observe that by the properties of standard decompositions h1 does not have

un−1 as a terminal segment. On the other hand |µ(d1)| ≥ |h1| because of the
choice of h1.

(i) If |µ(d1)| = |h1| then automatically µ(d1) = h1. Now, either β1 ≤ α1 or
β1 > α1, uγ

n−1 = h2 ◦ u′, γ ∈ {1,−1}, u′ �= ε and π(un) = π(h1)uα1
n−1π(h2) —

otherwise a contradiction with the choice of h2.
In the former case, if β1 = α1 then we proceed with d2, as before with d1, but

if β1 < α1, then µ(d2) contains un−1 as an initial segment, that is, d2 is (un−1, 1)-
irregular of type I or II and by induction there exists a doubling path z = z1z2 for d2

such that o(d2) = o(z), t(d2) = t(z), µ(z) = µ(p), µ(z1) = π(un−1), t(z1) = o(z2)
and t(p1) belong to the same un−1-component D. So, we have either a path d1p1

or a path d1p1z1 labeled by π(h1)uα1
n−1.
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In the latter case, un = h1◦uα1
n−1◦h2 and there exists the required path r = r1r2,

where µ(r1) = π(h1) and µ(r2) = uα1
n−1 ◦ h2 ◦ c, uγ

n−1 = h2 ◦ u′, γ ∈ {1,−1}.
(ii) If |µ(d1)| > |h1| then by [10, Lemma 6.9] we should have µ(d1) = h1 ◦

uk
n−1, k ∈ Z, where the sign of k depends on the sign of α1 and we can assume

k > 0. In fact, because of our assumption about di we have k = 1. Hence, d1

is (un−1, 1)-irregular of type I or II and by induction there exists a doubling path
z = z1z2 for d1 such that o(d1) = o(z), t(d1) = t(z), µ(z2) = π(un−1), t(z1) = o(z2)
belongs to some un−1-component D. Observe that t(z1) and t(d1) belong to the
same un−1-component D.

We proceed with p1. We have either β1 + 1 ≤ α1 or β1 + 1 > α1, uγ
n−1 = h2 ◦

u′, γ ∈ {1,−1}, u′ �= ε and π(un) = π(h1)uα1
n−1π(h2) — otherwise a contradiction

with the choice of h2.
If β1 + 1 = α1 then we proceed with d2, as before with d1. If β1 + 1 < α1, then

µ(d2) contains un−1 as an initial segment, that is, d2 is (un−1, 1)-irregular of type
I or II and by induction there exists a doubling path z′ = z′1z′2 for d2 such that
o(d2) = o(z′), t(d2) = t(z′), µ(z′1) = π(un−1) and t(z′1) = o(z′2), t(p1) belong to
the same un−1-component D. So, we have either a path z1z2p1 or a path z1z2p1z

′
1

labeled by π(h1)uα1
n−1.

If β1+1 > α1, uγ
n−1 = h2◦u′, γ ∈ {1,−1}, u′ �= ε and π(un) = π(h1)uα1

n−1π(h2)
then un = h1 ◦ uα1

n−1 ◦ h2 and there exists the required path r = r1r2, where
µ(r1) = π(h1) and µ(r2) = uα1

n−1 ◦ h2 ◦ c.
We have considered the first step and now the proof of the claim follows by

induction on m.

Claim 4.22. Let Φ be a (Z[t], X)-graph such that l(Φ) = n and U(Φ) =
{u1, . . . , un}. Suppose Φ(n − 1) is U -folded and Φ satisfies (1)–(7). If C is a un-
component of Φ, v ∈ V (C) and there is a doubled (un, δ)-irregular path p of type I
originating from v then any (un, δ)-irregular path r of type I originating from v is
also doubled.

Proof of Claim 4.22. Suppose there exists an undoubled (un, δ)-irregular path
r of type I originating from v. By Claim 4.21 we have r = z1z2, µ(z1) =
π(h1)uα1

n−1π(h2) · · ·π(hm), µ(z2) = uαm
n−1 ◦ hm+1 ◦ c(r), uγ

n−1 = hm+1 ◦ u′, where
γ ∈ {1,−1} and

π(un)δ = π(h1)uα1
n−1π(h2) · · ·uαm

n−1π(hm+1).

Since p is doubled then there exists a label reduced path q = q1q2 in Φ(n− 1) such
that o(q) = v, t(q) = t(q2) = t(p), µ(q) = µ(p), µ(q1) = π(un)δ, t(q1) ∈ V (C).
Observe that q1 = z1r1, where µ(r1) = uαm

n−1π(hm+1). We use the notation r1 =
r2r3, where µ(r2) = uαm

n−1 and µ(r3) = π(hm+1).
Consider a(r) = uαm

n−1 ◦ hm+1 ◦ c(r). Without loss of generality we can assume
αm > 0, so γ = 1. Since αm � 0 it follows that

π(a(r)) = u
β(r)
n−1 ◦ a1 ◦ · · · ◦ ak
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and β(r) ≥ αm+γ. Φ(n−1) is U -folded so there exists a path d in Φ(n−1) such that
o(d) = o(z2), t(d) = t(z2), µ(d) = π(a(r)) and we denote by d1 the initial subpath
of d such that µ(d1) = u

β(r)
n−1. Observe that t(r2) ∼un−1 t(d1). Since Φ(n − 1) is U -

folded there exists a continuation r′3 of r3 such that t(r′3) ∼un−1 o(r3) ∼un−1 t(d1).
Hence, there is a label reduced path z such that o(z) = t(r3), t(z) = t(r),

µ(z) = u′ ◦ u
β(r)−αm−γ
n−1 ◦ a1 ◦ · · · ◦ ak

and q1z is label reduced. Finally, µ(q1z) = µ(r), o(q1z) = o(r), t(q1z) = t(r) so q1z

is a doubling of r — contradiction with our assumption. The claim is proved.

Claim 4.23. Let Φ be a (Z[t], X)-graph such that l(Φ) = n and U(Φ) =
{u1, . . . , un}. Suppose Φ(n − 1) is U -folded and Φ satisfies (1)–(7). If C is
a un-component of Φ, v ∈ V (C) and there are (un, δ)-irregular paths p =
pΦ(n−1)pΦ(n), r = rΦ(n−1)rΦ(n) of type II originating from v then µ(pΦ(n−1)) =
µ(rΦ(n−1)).

Proof of Claim 4.23. Without loss of generality we can assume δ = 1. We have
p = pΦ(n−1)pΦ(n), pΦ(n−1) ∈ Φ(n − 1), µ(pΦ(n−1)) = w1, µ(pΦ(n)) = w2 ◦ c(p) =
u

γp
n ◦ c1(p), γp ∈ Z[t] − Z, un = w1 ◦ w2, w2 �= ε and r = rΦ(n−1)rΦ(n), rΦ(n−1) ∈

Φ(n − 1), µ(rΦ(n−1)) = w3, µ(rΦ(n)) = w4 ◦ c(r) = uγr
n ◦ c1(r), γr ∈ Z[t] − Z,

un = w3 ◦ w4, w4 �= ε.
Observe that if γpγr > 0, that is, for example γp > 0, γr < 0 then we have

w3 ◦ w4 = w3 ◦ w−1
4 and w4 = w−1

4 = ε — contradiction. So, we can assume
γp > 0, γr > 0.

Suppose |w1| > |w3|. Then w1 = w3 ◦ a, a �= ε. Observe that w1 ◦ u
γp
n and

w3 ◦ uγr
n have common initial segment of the length at least 2|un| and we obtain

w1 ◦ w3 ◦ w4 ◦ w3 = w3 ◦ w1 ◦ w2 ◦ w1.

It follows that [w1, w3] = [w1, a] = [w3, a] = ε. On the other hand we have

w4 ◦ w3 = w2 ◦ w1.

Since w4 = a◦w2 then a◦w2◦w3 = w2◦w3◦a and using the fact that w3◦a = a◦w3

we obtain w2 ◦ a = a ◦ w2. Hence, [w2, a] = [w2, w1] = ε. It follows that w1, w2 are
powers of the same element and un is a power — contradiction.

Hence, |w1| = |w3| and thus w1 = w3, w2 = w4. The claim is proved.

Claim 4.24. Let Φ be (Z[t], X)-graph such that U(Φ) = n and U(Φ) =
{u1, . . . , un}. Suppose Φ(n − 1) is U -folded and Φ satisfies (1)–(7). If v ∈ V (Φ)
and p a path in Φ(n− 1) such that o(p) = v, µ(p) = π(w) then for any w1, w2 such
that w = w1 ◦ w2 one can construct a (Z[t], X)-graph Φ0 such that

(a) Φ0 satisfies (1)–(7),
(b) Φ(n − 1) is U -folded,

(c) if v1 ∈ V (Φ) and v2 ∈ V (Φ0) corresponds to v1 then L(Φ, v1) = L(Φ0, v2),
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(d) there exists a path q = q1q2 in Φ0 such that o(q) = v, t(q) = t(p), µ(q1) =
π(w1), µ(q2) = π(w2).

Proof of Claim 4.24. Let

π(w) = π(h1)uα1
n−1π(h2) · · ·uαm

n−1π(hm+1).

We conduct the proof by induction on k = max{U(w1)}.
Let k = 0. Hence w ∈ F (X). Let r1r2 be the initial subpath of p such that

r2 ∈ E(Φ), µ(r1) = π(g), g ∈ F (X), µ(r2) = uα
1 , α ∈ Z[t] − Z. We can assume

that u1 ∈ F (X) and α > 0.
If |w1| ≤ |g| then Φ already has the required path and we are done. Hence

assume that |w1| > |g|. It follows that w1 = g ◦ uk
1 ◦ c, where c is an initial subpath

of u1 (possibly trivial) and k ≥ 0.
Observe that o(r2) belongs to some u1-component of Φ. If Hu1(zD) ∩ 〈u1〉 �= ε

then we are done setting Φ0 = Φ. Thus, assume Hu1(zD)∩〈u1〉 = ε. If there exists a
path in D originating from v and labeled by uk+1

1 then there exists a corresponding
path in Γ(0) with the same label and endpoints — we are done in this case. So, we
can assume that there is no such path in D. We split r2 into f1f2 · · · fk+2 so that
µ(fi) = u1, i ∈ [1, k + 1], µ(fk+2) = uα−1

1 and add paths zi, i ∈ [1, k + 1] so that
o(zi) = o(fi), t(zi) = t(fi), µ(zi) = π(u1). Thus obtained graph Φ0 is U -folded
and there exists a path q = q1q2 in Φ0 such that o(q) = v, t(q) = t(p), µ(q1) =
π(w1), µ(q2) = π(w2).

We assume that we can construct the required graph Φ0 for any w1 such that
k = max{U(w1)} = n − 2. Suppose k = n − 1.

Let r1r2 be the initial subpath of p such that µ(r1) = π(h1), µ(r2) = uα1
n−1. We

can assume that α1 > 0.
Since max{U(w1)} = n − 1 it follows that w1 = h1 ◦ uθ

n−1 ◦ c, α1 ≥
θ � 0, un−1 = c ◦ c1. Observe that o(r2) belongs to some un−1-component D and
we can assume that there exists no path in D originating from o(r2) and labeled
by uθ

n−1.
We add an edge e1 and a vertex v1 to Φ so that o(e1) = o(r2), t(e1) =

v1, µ(e1) = uθ
n−1. Thus we have a un−1-component D∪{e1} in the resulting graph.

We fold e1 with PD and obtain a new graph Φ′ with the un−1-component D′ which
corresponds to D ∪ {e1}. It is easy to see that Hun−1(zD′) = Hun−1(zD). By our
assumption v1 is not identified with any vertex of D in D′ hence v1 divides some
edge f ∈ E(D) into two edges f1 and f2 so that o(f1) = o(f), t(f1) = o(f2), t(f2) =
t(f), µ(f) = uλ

n−1, µ(f1) = uλ1
n−1, µ(f2) = uλ2

n−1. Observe that |λ| � 0 and we can
assume λ to be positive.

1. λ1, λ2 � 0.
We can assume that D′ has the property (5), otherwise the situation reduces to

the case when either λ1 or λ2 is finite. Hence, there exists no path in D′ originating
from v1 and labeled by un−1.
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(a) Hun−1(zD′) ∩ 〈un−1〉 = uk
n−1 �= ε.

Let φ be a graph which consists of a single loop labeled by π(un−1)k. Since
l(φ) = n − 2 then by the induction hypothesis there exists a corresponding U -
folded graph φ′. Let ai, i ∈ [0, k − 1] be the vertices of ψ which correspond to the
endpoints of paths in ψ starting at o(φ) and labeled by π(un−1)i, i ∈ [0, k − 1],
and let θ = θ1θ2 · · · θk be a graph which consists of a single loop such that t(θi) =
o(θi+1), i ∈ [1, k − 1], t(θk) = o(θ1), µ(θi) = un−1, i ∈ [1, k]. Then we identify ai

with o(θi+1) for all i ∈ [0, k−1]. It easy to see that φ′∪θ is U -folded and we denote
it by Ψ.

Now we add Ψ to Φ′ so that a0 is identified with v1 and fold θ with PD′ (in fact
with f2). Hence we obtain a new graph Φ′′ with the un−1-component D′′ which
corresponds to D′ and such that Φ′′(n − 1) is U -folded. Observe that there exists
an edge e2 in D′′ such that o(e2) = v1, µ(e2) = un−1 and a path d in Φ′′(n − 2)
such that o(d) = v1, t(d) = t(e2), µ(d) = π(un−1).

v

t(p)

D

v

t(p)

D

r1

v1

v2

e1
e2

d

v

t(p)

D

t(   )q1

w1

r1

π(   )w1

π(   )w2w2

v2

Fig. 7. Proof of Claim 4.24.

(b) Hun−1(zD′) ∩ 〈un−1〉 = ε.
We divide f2 into two edges e2 and f ′

2 such that o(e2) = o(f2), t(e2) =
o(f ′

2), t(f ′
2) = t(f2), µ(e2) = un−1, µ(f ′

2) = uλ2−1
n−1 . Let d be a graph which con-

sists of a single path labeled by π(un−1). Since l(d) = n − 2 then by the induction
hypothesis there exists a corresponding U -folded graph ψ. Abusing notation, we
denote the vertices corresponding to endpoints of d in ψ by o(d) and t(d). Finally
we add a path ψ to Φ′ so that o(d) = o(e2), t(d) = t(e2) and obtain a new graph
Φ′′ with the un−1-component D′′ which corresponds to D′ so that Φ′′(n − 1) is
U -folded.

2. Either λ1 or λ2 is finite.
We can assume that λ1 ∈ Z. Hence Hun−1(zD′) ∩ 〈un−1〉 = ε and then there

exists no path in D′ originating from v1 and labeled by un−1. Then we divide f2
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into two edges e2 and f ′
2 such that o(e2) = o(f2), t(e2) = o(f ′

2), t(f ′
2) = t(f2),

µ(e2) = un−1, µ(f ′
2) = uλ2−1

n−1 . Similarly to 1(b) we add to Φ′(n − 2) a U -folded
graph corresponding to a single path φ1 labeled by π(un−1)λ1 so that o(φ1) is
identified with o(f1) and t(φ1) is identified with t(f1), and in the same way we
add a U -folded graph corresponding to a single path φ2 labeled by π(un−1) so that
o(φ2) is identified with o(e2) and t(φ1) is identified with t(e2). The obtained graph
with the un−1-component D′′ which corresponds to D′ we denote by Φ′′, and it is
easy to see that Φ′′(n − 1) is U -folded.

Eventually, in all cases above in the graph Φ′′ there exists a path p1dp2 such
that o(p1) = v, t(p1) = o(d) = v1, t(d) = o(p2), t(p2) = t(p), µ(p1) =
π(h1)uθ

n−1, µ(d) = π(un−1), µ(p2) = uα1−θ
n−1 π(h2) · · ·uαm

n−1π(hm+1). By the induc-
tion hypothesis considering d we can construct a graph Φ0 in which there exists
a path d1d2 such that o(d1) = o(d), t(d1) = o(d2), t(d2) = t(d), µ(d1) =
π(c), µ(d2) = π(c1). Hence, setting q1 = p1d1, q2 = d2p2 we get the required.

Next, in the same way we consider w1 = h1 ◦ uα1
n−1 ◦ h′

2(r), where h′
2 is an

initial segment of h2 and so on. In a finite number of steps we obtain the required
graph Φ0. The claim is proved.

Claim 4.25. Let Φ be a (Z[t], X)-graph such that l(Φ) = n and U(Φ) =
{u1, . . . , un}. Suppose Φ(n − 1) is U -folded and Φ satisfies (1)–(7). If C is a un-
component of Φ, v ∈ V (C) and there is a (un, δ)-irregular path p of type I or II
originating from v then adding finitely many edges to Φ one can transform it into
a (Z[t], X)-graph Φ0 such that

(a) Φ0 satisfies (1)–(8),
(b) Φ0(n − 1) is U -folded,

(c) p is doubled in Φ0,

(d) if w ∈ V (Φ) and w0 ∈ V (Φ0) corresponds to w then L(Φ0, w0) = L(Φ, w).

Proof of Claim 4.25. Without loss of generality we can assume δ = 1. We have
the following cases.

I. p is of type I.
Since uδ

n is an initial subword of w = µ(p) then by Claim 4.24 we trans-
form Φ into the graph Φ′ such that there exists a path q = q1q2 in Φ′(n − 1)
and o(q) = v, t(q) = t(q2) = t(p), µ(q) = µ(p), µ(q1) = π(un)δ, µ(q1) =
π(u−δ

n ∗ w). Finally to make this path q a doubling of p we need just to attach
t(q1) to C.

II. p is of type II.
We have p = pΦ(n−1) pΦ(n), o(p) ∈ V (C), pΦ(n−1) ∈ Φ(n − 1), µ(pΦ(n−1)) =

w1, µ(pΦ(n)) = w2 ◦ c = uγ
n ◦ c1, γ ∈ Z[t] − Z, un = w1 ◦ w2, w2 �= ε, δ ∈ {1,−1}.

That is, t(pΦ(n−1)) ∈ V (D), where D is a un-component of Φ(n). Without loss of
generality we can assume γ > 0. Since γ � 0 it follows that π(uγ

n◦c1) = uγ′
n−1◦π(c2),

where γ′ ≥ γ and c2 is a terminal segment of c1.
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Fig. 8. Doubling of a (un, 1)-irregular path of type I. Possible case 1.
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Fig. 9. Doubling of a (un, 1)-irregular path of type I. Possible cases 2 and 3.

1. The first edge of pΦ(n) is labeled by finite exponent of un.
Then there exists a label reduced path d labeled by π(un) such that o(d) =

t(pΦ(n−1)), t(d) ∈ V (D). On the other hand there exists a path p′ such that o(p′) =
t(d), t(p′) = t(p), µ(p′) = c2, thus pΦ(n−1)dp′ has the same label and endpoints
as p. Now observe that pΦ(n−1)d is (un, 1)-irregular of type I and the existence of
its doubling impies the existence of a doubling for p. Hence, we reduce everything
to the case I.

2. The first edge e of pΦ(n) is such that o(e) = o(pΦ(n)), µ(e) = uβ
n, β � 0.

(a) Hun(zD) ∩ 〈un〉 �= ε.
By the properties (3) and (4) of Φ there exists a label reduced path d labeled by

π(un) such that o(d) = t(pΦ(n−1)), t(d) ∈ V (D). Also there exists a path p′ such
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that o(p′) = t(d), t(p′) = t(p), µ(p′) = c2, thus pΦ(n−1)dp′ has the same label and
endpoints as p. Hence we have the reduction to the case I as in 1.

(b) Hun(zD) ∩ 〈un〉 = ε.
Observe that there exists no path in D starting at t(pΦ(n−1)) with the reduced

label un−1 — otherwise D is not minimal with respect to the number of infinite
edges and we get a contradiction with the fact that Φ has the properties (1)–(7).

v

un

t(p)

C

D

v

t(p)

C

D
p'

d

pΦ(n−1)

pΦ(n)

pΦ(n−1)

t(d)
un

Fig. 10. Doubling of a (un, 1)-irregular path of type II. Reduction to I.

We divide e by a new vertex v′ into two edges e1 and e2 so that o(e1) =
o(e), t(e1) = v′, o(e2) = v′, t(e2) = t(e), µ(e1) = un, µ(e2) = uβ−1

n . The resulting
graph we denote by Φ′ and the un-component corresponding to D by D′. Observe
that D′ is un-folded because of our assumption. Finally, we add a U -folded graph
corresponding to a single path d labeled by π(un) so that o(d) is identified with
o(e1) and t(d) is identified with t(e1). The resulting graph Φ′′ has the properties
(1)–(7) and Φ′′(n − 1) is U -folded. Finally, since t(d) ∈ V (D′) then there exists a
path p′ such that o(p′) = t(d), t(p′) = t(p), µ(p′) = c2, thus pΦ(n−1)dp′ has the
same label and endpoints as p. Everything reduces to the case I again.

This completes the proof of the claim.

Claim 4.26. Let Φ be a (Z[t], X)-graph such that l(Φ) = n and U(Φ) =
{u1, . . . , un}. Suppose Φ(n − 1) is U -folded and Φ satisfies (1)–(7). If C is a un-
component of Φ, v ∈ V (C) then adding finitely many edges to Φ one can transform
it into a (Z[t], X)-graph Φ0 such that

(a) Φ0 satisfies (1)–(8),
(b) Φ0(n − 1) is U -folded,

(c) all (un, δ)-irregular paths of type III originating from v are doubled in Φ0,

(d) if w ∈ V (Φ) and w0 ∈ V (Φ0) corresponds to w then L(Φ0, w0) = L(Φ, w).

Proof of Claim 4.26. If there is no (un, δ)-irregular path of type III originating
from v then we are done setting Φ0 = Φ.

Suppose on the contrary that there exists a path p in Φ such that
o(p) = v, µ(p) = w1(p), uδ

n = w1(p) ◦ w2(p), w2(p) �= ε, δ ∈ {1,−1} and
there exists a path p′ in C such that o(p′) = o(p), µ(p′) = uγ

n, γ ∈ Z[t], γδ > 0.
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Without loss of generality we can assume δ = 1, hence γ > 0.
Observe that if γ ∈ Z then the first edge of p′ is labeled by a finite exponent of

un because of the properties (1)–(8) of Φ. In this case it follows immediately that
all (un, 1)-irregular paths of type III originating from v are doubled. This happens
also when Hun(zC) ∩ 〈un〉 �= ε or there exists an edge f in C such that o(f) = v

and µ(f) = uk
n, k ∈ Z. Hence we can assume that Hun(zC) ∩ 〈un〉 = ε and that

the first edge e of p′ belongs to PC and is labeled by an infinite positive exponent
of un, that is, o(e) = v, µ(e) = uβ, β � 0.

Observe that there exists no path in C starting at t(pΦ(n−1)) with the reduced
label un−1 — otherwise C is not minimal with respect to the number of infinite
edges and we get a contradiction with the fact that Φ has the properties (1)–(7).

We divide e by a new vertex v′ into two edges e1 and e2 so that o(e1) =
o(e), t(e1) = v′, o(e2) = v′, t(e2) = t(e), µ(e1) = un, µ(e2) = uβ−1

n . The resulting
graph we denote Φ′ and the resulting un-component by C′. Hence C′ is un-folded.

Let d be a graph which consists of a single path labeled by π(un). Since l(d) =
n−1 then by the induction hypothesis there exists a corresponding U -folded graph
ψ. Abusing notation we denote the vertices corresponding to endpoints of d in ψ

by o(d) and t(d). Finally we add a path ψ to Φ′ so that o(d) = o(e1), t(d) = t(e1)
and obtain a new graph Φ′′ with the un−1-component C′′ which corresponds to C′.

Observe that Φ′′(n−1) is not U -folded since there is at least one (un, 1)-irregular
path p of type III originating from v = o(d).

Let P be the set of all (un, 1)-irregular paths in Φ of type III which originate
from v. Since Φ(n − 1) is U -folded then by Proposition 4.9 for each r ∈ P there
exists a path pr in Φ such that o(pr) = o(r), t(pr) = t(r), µ(pr) = µ(r). So, let

P ′ = {pr | r ∈ P}.
It is easy to see that P ′ ⊆ P and P ′ �= ∅. Observe that it is enough to construct
doublings only for paths from P ′.

We say that r ∈ P ′ has level k if k is the minimal natural number such that
r ∈ Φ(k). Hence P ′ has a natural level structure, that is, all its elements are ranged
according to their levels. Observe that levels of paths from P ′ are bounded by n−1.

Below we introduce the inductive procedure which transforms Φ′′(n− 1) into a
U -folded graph Φ0. Hence all elements of P ′ will be doubled in Φ0.

Let

π(un) = π(h1)uα1
n−1π(h2) · · ·uαm

n−1π(hm+1).

Let k = 0.
All paths in P ′ of level 1 are labeled by reduced words in X±. Let p1f be the

initial subpath of d such that µ(p1) = π(g), g ∈ F (X), µ(f) = uα
1 , α ∈ Z[t] − Z.

We can assume that u1 ∈ F (X) and α > 0.
(i) Suppose there exist only finitely many elements of P ′ of level 1. Then let

r ∈ P ′ be the path of level 1 with the maximal length. Hence we have µ(r) =
g ◦ u

k(r)
1 ◦ c(r), where c(r) is an initial segment of u1 and all other paths from P ′
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of level 1 are initial subpaths of r. We split f as f1f2 · · · fk(r)+2 so that µ(fi) =
u1, i ∈ [1, k(r)+1], µ(fk(r)+2) = uα−1

1 and add to d paths zi, i ∈ [1, k(r)+1] so that
o(zi) = o(fi), t(zi) = t(fi), µ(zi) = π(u1). Finally, we fold r with z1z2 · · · zk(r)+1.

(ii) Suppose there exist infinitely many elements of P ′ of level 1. Since Φ is
finite it follows that for any path r of level 1 we have µ(r) = g ◦ u

i(r)+l(r)K
1 ◦ c(r),

where i(r) ∈ [0, K − 1], K ∈ N, l(r) ∈ N and c(r) is an initial segment of u1.
Hence we add at o(f) a loop f1f2 · · · fK such that t(fi) = o(fi+1), i ∈ [1, K −
1], t(fK) = o(f1) = o(f), µ(fi) = u1, i ∈ [1, K] and a path z1z2 · · · zK such that
o(zi) = o(zi), t(zi) = t(zi), i ∈ [1, K], µ(zi) = π(u1), i ∈ [1, K]. Finally we fold
f1f2 · · · fK with f and it is easy to see that now all paths from P ′ of level 1 can be
folded with z1z2 · · · zK .

We can assume that all elements of P ′ of level n − 2 have been folded with d.
Suppose k = n − 1.

Let p1f be the initial subpath of d such that µ(p1) = π(h1), µ(f) = uα1
n−1. We

can assume that α1 > 0.
We can assume that there exists a path r ∈ P ′ of level n − 1 such that µ(r) =

h1 ◦ u
θ(r)
n−1, α1 ≥ θ(r) � 0. Otherwise we are done by the induction hypothesis.

Hence, r = r1r2, where µ(r1) = π(h1), µ(r2) = uθ
n−1 and t(r1) belongs to some

un−1-component D of Φ. On the other hand, observe that for any path r′ ∈ P ′ of
level n − 1 such that µ(r′) = h1 ◦ u

θ(r′)
n−1 , α1 ≥ θ(r′) � 0 we have r′ = r′1r′2, where

µ(r′1) = π(h1), µ(r′2) = u
θ(r′)
n−1 and t(r′1) belongs to D. Hence we fold f with PD and

the resulting un−1-component D′ is un−1-folded.
Next, we consider elements r of P ′ of level n − 2 such that µ(r) = h1 ◦ uα1

n−1 ◦
h′

2(r), where h′
2 is an initial segment of h2. In this case r = r1r2r3, where µ(r1) =

π(h1), µ(r2) = uα1
n−1, µ(r3) = π(h′

2) and we can assume that r1r2 is already folded
with d. But to fold r3 we can use the induction hypothesis and so on. In a finite
number of steps we obtain the required graph Φ0. The claim is proved.

Claim 4.27. Let Φ be a (Z[t], X)-graph such that l(Φ) = n and U(Φ) =
{u1, . . . , un}. Adding finitely many edges to Φ one can transform it into a (Z[t], X)-
graph Φ0 such that

(a) Φ0 satisfies (1)–(8),
(b) if v ∈ V (Φ) and v0 ∈ V (Φ0) corresponds to v then L(Φ0, v0) = L(Φ, v).

Proof of Claim 4.27. In view of Claim 4.20 we can assume that Φ satisfies (1)–(7)
and Φ(n − 1) is U -folded.

Let C be a un-component of Φ and v ∈ V (C). In view of Claim 4.25 we can
construct a doubling for any (un, δ)-irregular path of type I or II originating from v.
Hence by Claims 4.22 and 4.23 all (un, δ)-irregular paths of type I or II originating
from v are doubled too. At the same time, in view of Claim 4.26 we obtain a new
graph Φ′ for which all (un, δ)-irregular paths of any type originating from v are
doubled. Finally, since the number of un-components is finite as well as the number
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of vertices in them then after finitely many steps we obtain the required graph Φ0.
The claim is proved.

By Claim 4.27, Γ can be transformed into a U -folded graph ∆.

It can be seen easily from the Proposition 4.13 that properties of U -folded
graphs are similar to the properties of folded X-graphs introduced in [4]. In [4]
X-graphs are used for studying the structure of subgroups in free groups and for
solving various algorithmic and combinatorial problems for free groups and their
subgroups. In the next subsection we try to do the same for finitely generated
subgroups of F Z[t] using (Z[t], X)-graphs.

4.3. Membership problem for subgroups of F Z[t]

In Sec. 4.1 (see Lemma 4.2) we saw that any finite (Z[t], X)-graph defines a subgroup
in F Z[t]. We will show now that the converse statement is also true.

Proposition 4.28. Let H be a finitely generated subgroup of F Z[t]. Then there
exists a U -folded (Z[t], X)-graph Γ and a vertex v of Γ such that L(Γ, v) = H.

Proof. Since H is finitely generated then there are elements h1, . . . , hk in F Z[t]

which generate H . Since F Z[t] is a union of the following infinite chain of groups:

F (X) = G0 < G1 < · · · < Gn < · · · ,
where Gi+1 is obtained from Gi by extension of all cyclic centralizers in Gi, there
exists a minimal natural number n such that hi ∈ Gn+1 for all i ∈ [1, k].

We define an (Z[t], X)-graph Γ1 in the following way. Γ1 is a wedge of k circles
wedged at a vertex denoted v1. The ith circle is subdivided into ni edges which are
oriented and labeled by letters from

B = X± ∪ {uα | u ∈ U, α ∈ Z[t] − Z}
so that the label of the ith circle (as read from v1 to v1) is precisely the word π(hi).
Note that Γ1 is connected.

For any cycle p at v1 in Γ1 we have µ(p) ∈ L(Γ1, v1) by definition. So H ⊂
L(Γ1, v1). The converse is obviously true — if g ∈ L(Γ1, v1) then it can be realized
as a reduced label of some cycle at v1 in Γ1, so it can be obtained as a finite product
of basic cycles labeled by π(hi). Thus we have H = 〈h1, . . . , hk〉 ⊂ L(Γ1, v1).

By Proposition 4.13, from Γ1 by finitely many free and u-foldings, where u ∈⋃k
i=1 U(hi) one can obtain a finite U -folded (Z[t], X)-graph Γ which is connected

and there exists some vertex v in Γ which corresponds to v1 in Γ1. By Lemma 4.3
we have L(Γ1, v1) = L(Γ, v).

Observe that Γ constructed in the proposition above is not unique in general.
But all graphs associated with H define the same language which coincides with H .
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Proposition 4.13 only states the existence of (Z[t], X)-graph Γ for H . But, in
fact, the following result follows directly from the procedures described in the proofs
of Lemmas 3.15, 3.17 and 3.18 and Proposition 4.13.

Proposition 4.29. There is an algorithm which, given finitely many standard
decompositions of elements h1, . . . , hk from F Z[t], constructs a U -folded (Z[t], X)-
graph Γ, such that L(Γ, v) = 〈h1, . . . , hk〉.

The next result is a solution of membership problem for finitely generated sub-
groups of F Z[t].

Proposition 4.30. Every finitely generated subgroup of F Z[t] has a solvable mem-
bership problem. That is, there exists an algorithm which, given finitely many stan-
dard decompositions of elements g, h1, . . . , hk from F Z[t], decides whether or not g

belongs to the subgroup H = 〈h1, . . . , hn〉 of F Z[t].

Proof. We construct a U -folded (Z[t], X)-graph Γ, such that L(Γ, v) = 〈h1, . . . , hk〉
which is a finite algorithmic procedure by Proposition 4.29.

Let

F < H1 < H2 < · · · < Hn,

be the extension series for g, where g ∈ Hn and Hi+1 is obtained from Hi by a
centralizer extension of a single element ui and let U(g) = {u1, . . . , un}. Then we
check if g ∈ L(Γ, v) using inductive argument based on |U(g)|.

g ∈ H = L(Γ, v) if and only if there exists a reduced cycle p at v in Γ such that
g = µ(p). By Proposition 4.9 of Γ we can assume that µ(p) = π(g).

Let

π(g) = π(h1)uα1
n π(h2) · · ·uαm

n π(hm+1).

If |U(g)| = 0, that is, π(g) is a reduced word in {X ∪ X−1} then we just try
to “read” π(g) in Γ(0) starting at the vertex v — this can be done as shown in
[4, Proposition 7.2].

Suppose there is an algorithm which “reads” a standard decomposition of an
element h ∈ Hn−1, that is |U(g)| < n, starting from any point v′ ∈ V (Γ) and
returns answer “yes” if there exists a path in Γ corresponding to π(h) or “no” if
such path does not exist. Then we apply this algorithm to v and π(h1). If we get
“no” as a result then it means by Proposition 4.9 that there exists no path for h1

starting at v in Γ and we stop — g does not belong to H . If we get “yes” as a result,
that is, we have a path p1 for π(h1) and if t(p1) belongs to some un-component C of
Γ then we try to “read” uα1

n as follows. A pair (PC , Hun(t(p1))) is associated with C,
where PC is a finite positively oriented path and Hun(t(p1)) is a finitely generated
free abelian group. By Lemma 3.18 it is enough to check if uα1

n ∈ µ(q) ∗Hun(t(p1)),
where q is a reduced subpath of PC . Hence, if we can find such q then it is unique
and we proceed with h2. If there exists no such subpath of PC , we stop — g does
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not belong to H . In finitely many steps we either find out that g /∈ H on some
intermediate step or construct a path p from v to some v1 ∈ V (Γ), which is labeled
by π(g). If we manage to find p then we check if v = v1 which holds if and only if
g ∈ H .
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