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G R O U P S  W I T H  E X P O N E N T S  I. F U N D A M E N T A L S  
OF T H E  T H E O R Y  A N D  T E N S O R  C O M P L E T I O N S t )  

A. G. Myasnikov and V. N. Remeslennikov UDC 519.45 

We revise R. Lyndon's notion of group with exponents [1]. The advantage of the revised notion is 
that,  in the case of abelian groups, it coincides with the notion of a module over a ring. Meanwhile, 
the abelian groups with exponents in the sense of Lyndon form a substantially wider class. In what 
follows we introduce basic notions of the theory of groups with exponents; in particular, we present 
the key construction in the category of groups with exponents, that  of tensor completion. 

The main results of the article are exposed in [2]; the notions of free A-group and free product of 
A-groups can be found in [3]. 

w 1. Basic Notions of the Theory of Groups with Exponents  

1.1. D e f i n i t i o n  of a g roup  w i t h  e x p o n e n t s .  Let A be an associative ring with unity and let G 
be a group. We denote the result of the action of an a E A on a g E G by g~. Consider the following 
axioms: 

gl = g, g O = l ,  1 ~ =1 ,  
g,~+~ = ga g~, g ~  = (g~)~, 

(h - l  gh) a = h - l  g~h, 
[g,h] = 1 ~ (gh) ~ = g~h ~ 

(1) 
(2) 

(3) 
(4) 

DEFINITION 1. A group G is called a group with exponents over A in the sense of Lyndon if A 
acts on G and the action satisfies axioms (1)-(3). 

DEFINITION 2. A group G is called a group with exponents over A or an A-group if A acts on G 
and the action satisfies axioms (1)-(4). 

We let CA denote the class of all groups with exponents over A in the sense of Lyndon and let 
~]:A denote the class of M1 A-groups. Clearly, J2A D ~ A .  

PROPERTY 1. Every abe/Jan A-group is an A-module and vice versa. 
Meanwhile, there are abelian groups with exponents over A in the sense of Lyndon which are not 

A-modules. 
EXAMPLE 1 [1]. Let 0 be a nonidentical automorphism of a ring A and let M be a free A-module 

with a base {x, y}. Consider a new action | of A on M: 

|  z.0(r if z E x A U y A ,  
Z 

l z . a  if z f ~ x A U y A .  

The action satisfies axioms (1)-(3); however, if r ~ O(a0) then 

(x + y) o s0 = (x + y)~0 # (~ + y ) e ( . 0 )  = �9 o s0 + y o s0 ,  

violating axiom (4). 
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C o r o l l a r y  1. ~JJ~A is a proper subclass of "~A. 

PROPERTY 2. If  G E CA then Ix, y] = 1 =~ [x", y~] = 1 for arbitrary a, fl E A and x, y E G. 
[] We have yx a = y x a y - l y  = (yxy-1)ay = xay. Hence 

xay~ = xay~x-ax  a = (xayx-a)~x  a = y~x ~. [] 

Most of the na tmal  examples of groups with exponents belong to ~JYtA: 
every group is a Z-group; 
every group in CQ with unique roots is a Q-group; 
every group of period rn is a Z/mZ-group; 
every A-operator group in CA, where A is a ring of operators, is an A-group; 
every module over a ring A is an abelian A-group; 
every free group with exponents over A in the sense of Lyndon is an A-group; 
every nilpotent group with exponents over a binomial ring A which was introduced by Ph. Hall [4] 

is an A-group; 
every pro-p group is a Zp-gmup over the ring Zp of p-adic integers; 

every profinite group is a Z-group, where Z is the total completion of Z with respect to the 
profinite topology; 

every complex (real) unipotent Lie group is a C-group (R-group). 
Every group with exponents over A in the sense of Lyndon is a multioperator group (cf. [5]) 

in signature 
aA = ( ' , - ' ,  f~, [a E A), 

where fa  is the unary operation of raising to the power a; i.e., f~,(g) = g ~ 
Since axioms (1)-(3) are identities and axiom (4) is a quasi-identity, the definition of group with 

exponents implies the following 

P r o p o s i t i o n  1. 1. The class CA is a variety in signature a A. 
2. The class ffJiA is a quasivariety in signature aA. 

1.2. F a i t h f u l n e s s  a nd  to r s ion .  Let G be an A-group. We introduce the following notation: 

x A = { x " [ a E A } , x E G ,  xA= U x A ,  x c G .  
zEX 

DEFINITION 3. A nonzero element a E A acts faithfully on G if G ~ # 1. The ring A of scalars 
acts faithfully on G (A is a faithful ring of scalars of G) if every nonzero element of A acts faithfully 
on V. 

We put AnnAG = {a E A [ G" = 1}. 

P r o p o s i t i o n  2. The following assertions are valid for every A-group G: 
(1) AnnAG is a two-sided ideal of A; 
(2) the action of A on G induces an action of the quotient ring A = A / A n n A G  on G such that 

G becomes a faithful A-group. 
Proposition 2 allows one to pass from an arbitrary action of A on G to a faithful action on G; 

however, the latter is now that of the ring A. 

DEFINITION 4. An element g E G is said to be a torsion element if g~ = 1 for some a E A, 
a :# 0. The right ideal :D(g) = {a E A [ g" - 1} is called the exponent ideal of g. A group G without 
nonidentical torsion elements is called an A-torsion-free group. 

PROPERTY 3. Every A-torsion-free group is a faithful A-group. 

PROPERTY 4. Let g be a nonidentical element of G. If  a is invertible in A then g'~ # 1. 
Properties 3 and 4 imply 
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Propos i t i on  3. If A is a skew field then every A-group is a faithful A-torsion-free group. 
Now we give an example of a faithful A-group each of whose elements is a torsion element. 

o o  

EXAMPLE 2. Let G = ~) C(n), where C(n) is a cyclic group of order n. Then G is a faithful 
i=l  

torsion Z-group. 

1.3. M o r p h i s m s .  In this subsection we introduce various types of mappings between groups 
with exponents. 

DEFINITION 5. Let G, H E ~A- A homomorphism ~o : G --* H is said to be 
(a) a linear homomorphism, or an A-homomorphism, if (g")~ = (g~)a for all g G G and a E A; 
(b) a semilinear homomorphism if there exists an endomorphism 0 of the ring A such that  (ga)~, = 

(g~,)s(a) for all g E G and a E A; 
(c) a geometric homomorphism if (gA)~ = (g~)A for all g E G. 
In a natural  way we define A-mono(-epi, -iso, and -auto)morphisms. 
Let A act faithfully on G as well as on H. 

QUESTION: Given a G-semilinear isomorphism ~o : G --* H, is O necessarily an automorphism of 
the ring A? 

Since the composition of A-automorphisms is an A-automorphism too, the set of all A-automo- 
rphisms constitutes some group AurA(G). Unfortunately, AurA(G) is not necessarily an A-group. 

EXAMPLE 3. Let G be a vector space of dimension n over the field Q. Then G E ffJtQ and 
AutQG _ GLn(Q). However, the group GLn(Q) is not a group with unique roots. For instance, there 
is no square root for the matrix 

DEFINITION 6. A projective transformation ~ : G ~ H is defined to be an isomorphism 0 : 
L(G) -~ L(H) of the respective lattices L(G) and L(H) of A-subgroups of G and H. 

1.4. A - s u b g r o u p s  a n d  ideals .  Let G be an A-group. 

DEFINITION 7. A subgroup H _< G is called an A-subgroup if H A = H. A subgroup H is A- 
generated by a set X C G if H is the smallest A-subgroup of G containing X. We use the notation 
H = (X)A. 

Thus, A-subgroups of G are the subgroups of G regarded as a multioperator group. 

P R O P E R T Y  5.  Let X C_ G. Assign Xo = (X) and X,+ l  = (XA), where (X) denotes the subgroup 
(not A-subgroup!) generated by X. We have 

o o  

(x)A = U x,,. 
n----0 

PROPERTY 6. If H <_ G then (H)A ~ G. 
OO 

[] By Property 5, (H)A = U Hn, where Hn+l = (HA). By axiom (3), ~ - i u n + i x  = 

n----0 

( (x-I l l ,  x) A) = (H A) for every z E G. The last equality is obtained by induction on n. It fol- 
lows that  

OO OO 

"V-I(H)AX---- U x- lHnx = U Hn = (H)A. [] 
n----0 n ~ 0  

Notice that,  given an arbitrary normal A-subgroup H of G, the quotient group G/H does not 
necessarily enjoy some natural A-group structure. Below we define the notion of an ideal H of the 
group G that  satisfies certain conditions which allow one to induce A-structure in G/H. Of course, 
the definitions of A-ideal differ in the categories ~A and 92~A. 
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DEFINITION 8. A normal A-subgroup H of a group G �9 ~A is called an s if (gh) ~ �9 ga l l  
for all g �9 G, h �9 H, and a �9 A. 

P r o p o s i t i o n  4. Given groups G, H �9 s the following assertions hold: 
(1) i f  qo : G ---, H is an A-homomorphism then ker(~o) is an P~A-ideal of G; 
(2) i f  H is an ~A-ideal of G then the action of A on G induces an action of A on G / H  by the 

rule (gH) a : g~'H, g �9 G which makes G / H  into an ~A-group. 

To define an ~A-ideal ,  we need some preliminary notions. 

DEFINITION 9. Given g, h �9 G and a �9 A, we call the element (g, h)a - h-ag-a (gh)  " the 
a-commutator of g and h. 

It is clear that  (gh) a = gaha(g,h)~ and G �9 ~ A  @ ([y,h]~ = 1 ~ (g,h)a = 1). The preceding 
equivalence leads to the following definition of 9~A-ideal. 

DEFINITION 10. A normal A-subgroup H <1 G, G �9 s is said to be an flJtA-ideal if 

[g,h] �9 H =~ (g,h)a �9 H 

for all g, h E G and a E A. 

P r o p o s i t i o n  5. Let G E 2,A. Then 
(1) i f  H is an ffAA-ideal of G then H is an s of G; 
(2) i f  ~o : G ~ H is an A-homomorphism of groups in •IA then ker(~o) is an ~OIA-ideal of G; 
(3) i f  H is an flY'A-ideal of G then G / H  E ~ A .  

[] (1): Let H be an ffJ~A-ideal of G. Then we have (gh) ~' = g'~ha(g, h)a for g E G, h E H, and 
a E A. Since H is a normal subgroup of G, we have [g, hi E H; therefore, (g, h)a E H. It follows that 
ha(g, h)a E H and (g, h)~ E g~H; i.e., H is an s of G. 

(2): Let ~o : F ---* H be an A-homomorphism of groups in ~ A .  Then C = ker(~v) is a normal A- 
subgroup of G. If [g,h] e G then [g~',h ~~ = [g,h] ~' = 1. From here we infer the equality (g~,h~')a = 1 
in H. It follows that  (g, h)~ = (g~', h~')a = 1; i.e., (g, h)a e C. Thus, C is an ~A-ideal .  

(3): If H is an •$A-ideal of G then, by (1), H is an ,l~A-ideal of G; therefore, G / H  E 2,A. By the 
definition of flJSA-ideal, we have [g, h] �9 H =~ Va �9 A ((g, h)a �9 H),  which is equivalent to validity of 
axiom (4) for G / H .  [] 

1.5. O p e r a t i o n s  over  g ro up s  w i th  e x p o n e n t s .  We will show that the classes "~A and ff)tA 
are closed under the taking of direct and Cartesian products, as well as direct and inverse limits. 

Let Gi �9 ~A, i �9 I .  By l-IGi and 1-I Gi we shall mean the Cartesian direct products of the groups 
Gi. Let g �9 1-IGi, g = ( . . .  , g i , . . .  ), a �9 A. We define the action of A on G componentwise: 

go= (.. 

m 

It is straightforward that  if all groups Gi satisfy one of the axioms (1)-(4), then both groups I]Gi 
and I-[ Gi satisfy the same axiom. This proves the following 

P r o p o s i t i o n  6. The classes ~A and ~3~ A a r e  closed under direct and Cartesian products. 

Considering only A-homomorphisms in the standard definitions of direct and inverse limits, we 
can easily prove the following 

P r o p o s i t i o n  7. The classes s and ~[J~A a r e  closed under direct and inverse limits. 

In the category of abelian groups the operations of direct product, direct limit, and inverse limit en- 
joy universality properties [6]. The corresponding operations in the category of groups with exponents 
enjoy similar properties as well. Here we confine ourselves to stating the corresponding universality 
properties. 
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Propos i t ion  8 (universality of direct products). Let qoi : Gi ~ H be A-homomorphisms and 
let Xi : Gi ~ H be embeddings such that 

[,?i(ai),~oi(Gi) ] = 1, i r j ,  i , j  7 ~ I. 

Then there exists a unique A-homomorphism r : I-I Gi ~ H (independent of i) such that every 

diagram of the form 

Gi xi ,. 1-I Gi 
~'l / / / ~  ice (i E I) 

H 

corn_mutes. 

Denote by G, = limGi the limit group of a direct spectrum {Gi (i E I);~r{}. 
) 

iEI 

Propos i t ion  9 (universality of direct limits). Let ~ri denote the projection of Gi into G, and 
let ai : Gi --~ H be A-homomorphisms such that every diagram of the form 

,4, aj 

H 

commutes. 
form 

Then there exists a unique homomorphism cr : G, ~ H such that every diagram of the 

Gi Iri G, 

H 

commutes. 

Denote by G* = l imGi the limit group of an inverse spectrum {Gi (i E I) ;r~}.  
iEI 

Propos i t ion  10 (universality of inverse limits). If  H is an A-group and gi : H ~ Gi are 
A-homomorphisms such that every diagram of the form 

ai '4. aj 

H 

commutes then there exists a unique homomorphism cr : H ~ G* such that every diagram of the 
form 

ai G* 

~ i t ///~a (lEe) 
H 

commutes. 

990 



w 2. Tensor Completions 

Now we study the key operation in the class of groups with exponents, that  of tensor completion. 
It naturally generalizes the notion of scalar extension for modules to the noncommutative case. For 
the class of nilpotent groups, the idea of the generalization was exposed in the authors' article [7]. 
We will exploit the tensor completion while defining free constructions in the category of groups with 
exponents, the concept of free A-group inclusively. 

DEFINITION 11. Let G be an A-group and let # : A ---* B be a homomorphism of rings. A B-group 
G B,# is said to be a tensor B-completion of G if it is universal in the following sense: 

(1) there exists an A-homomorphism ~ : G ---* G B'~' such that  ,~(G) B-generates the group GB,#; 
i.e., (,~(G))B = GB'"; 

(2) for an arbitrary B-group H and an arbitrary A-homomorphism ~o : G --~ H consistent with. # 
(i.e., such that  (g")~' = (g~')"(")), there exists a B-homomorphism r : G B," --* H making the diagram 

Gi "~ G B'~ 

H 

commutative. 

If an A-group G is abelian then, by item (1) of Definition 11 and Properties 2 and 5, the group 
G B'~ is abelian too; i.e., G B,~ is a B-module. Furthermore, G B,~ satisfies the universality property 
of the tensor product G @A B of the A-module G by the ring B. Thus, G B,u ~_ G | B.  

Now we demonstrate that  the notion of tensor completion is a natural generalization of the notion 
of scalar extension for modules and that the new notion possesses most attributes of the former. 

In what follows, we usually fix the ring homomorphism tt : A ~ B, so that  we shall write G B 
rather than G B't'. 

T h e o r e m  1 (an existence theorem). For every A-group G and every ring homomorphism # : 
A ---, B there exists a B-completion. 

[] We introduce an equivMence relation in the class of all A-homomorphisms qo : G --~ H consistent 
with # and such that  H is a B-group B-generated by qa(G). Given two homomorphisms qOl and qo2 
of this form, we set qal "-, ~2 if and only if ker(~l) = ker(qo2) and there exists a B-isomorphism r 
between H1 and //2 such that  Cqol(g) = qo2(g) for all g E G. The collection I of the equivalence 
classes is a nonempty set of cardinality bounded by [G[ and [B[. We fix a representative qai : G  ---* Hi 
in each equivalence class i E I.  

Let Go = 1-I Hi be the Cartesian product of the groups. Then Go is a B-group and the map 
i E l  

A : g ~ ( . . . ,  qoi(g),...  ) is an A-homomorphism from G into Go. Let G B = (A(G))B be the B-group 
in Go generated by the set A(G). We will show that G B is the sought tensor B-completion of G. 
Since our construction guarantees that G B meets the first requirement of universality, we only have 
to verify that  the second is fulfilled. 

Let qo : G ---* H be an arbitrary A-homomorphism, consistent with #, from G into a B-group H. 
We put H0 = (A(G))B <_ H. For a suitable i �9 I we have ~ ,,, qai. Let an isomorphism r between Hi 
and H0 make qai and qo equivalent. Consider the diagram 

G A , GB e > Go 

H ,  Ho , Hi 
�9 . ~b 

in which e and e denote inclusions, a'i denotes the canonical projection, and lr = ~rilGS. Then re  is 
the sought B-homomorphism consistent with # and making the diagram commutative. [] 
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T h e o r e m  2 (uniqueness theorem). For every A-group G and every ring homomorph ism # : 
A ---* B, the tensor B-complet ion of  G is unique up to B-isomorphism. 

[] Let G1 and G2 be two arbitrary B-completions of G with respect to #. By definition, some 
B-homomorphisms Ca and r make the diagrams 

G " G1 

G2 

commutative. Put  f~ = r162 and f2 = r162 Since f i  is identical on Ai(G) and Ai(G) B-generates 
Gi, we have f i  = id; i.e., r and r are mutually inverse B-homomorphisms. [] 

In applications # will mostly be an embedding of rings. However, even in this case, the homomor- 
phism A : G ---* G B'" is not always an embedding. Since in the abelian case the group G B results from 
by tensoring the A-module G by the ring B, appropriate examples can be found in many articles on 
commutative algebra and homology. The following proposition describes the situation in which A is 
an embedding. 

DEFINITION 12. We call an A-group G a residually-B group with respect to a homomorphism # 
if for every 1 ~ g E G there exists an A-homomorphism ~og from G to a B-group H consistent with # 
and such that  ~g(g) ~ 1. 

P r o p o s i t i o n  11. Let an A-group_ G be a residually-B group with respect to a homomorph i sm #. 
Then the homomorph ism A : G ---* G B is an embedding. 

[] Let 1 ~ g E G and let Cg : G --~ H be an A-homomorphism consistent with # and such that 
~g(g) ~ 1. There exists a homomorphism r : G B ---* H such that ~g = CA. Therefore, A(g) ~ 1. [] 

w 3. T h e  C a t e g o r y  of G r o u p s  w i th  E x p o n e n t s  

We list basic categorical properties of tensor completion. 

3.1. T h e  c a t e g o r y  of  A-groups .  The following proposition is obvious. 

P r o p o s i t i o n  12. The class ~ A  01f a11 A-groups is a category whose morph isms  are all A-homo- 
morphisms.  

The category of A-groups possesses practically all attributes of the category of groups. 
From the categorical point of view, the above-introduced operation of tensor completion presents 

the functor  of  tensor completion. Let # : A --~ B be a homomorphism of rings. Basing on this 
homomorphism, we will construct a functor 0 B,~ (writing 0 s from now on) which will relate the 
category ~A of A-groups with the category ffJIB of B-groups. The action of the map 0 B : ff/tA ---* ffJtB 
on objects is determined by the rule OB(G) = G B, where G is an A-group and G B is the tensor 
B-completion of G with respect to #. 

Define the action of 0 n on the mor]~hisms of 92tA. Let H, G E ~]~A and let ~ : G ~ H be 
an A-homomorphism. Let AG : G --* G n and AI-I : H ---* H B be the canonical maps of Section 2. 
Since the composition ~o o AH is an A-homomorphism from A into H B consistent with #, there exist 
B-homomorphisms r and cB making the diagram 

G ~' , H 

G B ~ , H B 

commutative. We assign oB(~o) = ~o B. 
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T h e o r e m  3. I[ # : A ---* B is a ring homomorphism then 0 B is a covariant functor from the 
category fOIA to the category ffJ~B. 

[] We will check one of the axioms of the definition of functor. Let H = G and ~ = 1G. Verify 
that  (1G) B = 1Cs. Indeed, if A : G ~ G B is the canonical homomorphism then the restriction of 
( l c )  B to A(G) is identical. Since G B = (A(G))B, the map ( l c )  B is identical on the entire group G B 
as well. 

The remaining axioms of the definition of functor can be verified in a similar way. [] 

By a standard argument one can prove the following 

P r o p o s i t i o n  13. For short exact sequences, the functor of tensor completion is right exact but 
not left exact in general. 

Let A ~1 B u2 C be a sequence of ring homomorphisms. Assign/~ = #1#2 : A ---* C. These 
three homomorphisms determine a triple of functors 

e~B'/~I : ~IJ~A ~ ~/J~B, ~C,/~2 : r _..4 ~]~C, e~C'~ : ~J~A --~ ~J~C. 

We define the composition of functors oB,vl and r tJ~ in a natural way. 

P r o p o s i t i o n  14. With the above notation, 

CB,ul o r u2 = r 

Let # : A ---, B be an arbitrary ring homomorphism and let Im(#) = B0. Then # is canonically 
factored into the product of an epimorphism #1 : A ---* B0 and a monomorphism #2 : B0 ---* B. 
By Proposition 14, we have r o r = r In this case we shall speak about the canonical 
factorization of the functor of tensor completion. By that reason, the proofs of the subsequent theorems 
related to the construction of tensor completion reduce in a natural way to examining the following 
two cases: 

(a) # is an epimorphism of rings; 
(b) # is an embedding of rings. 
The operation of tensor completion commutes with the operations of direct product and direct 

limit, but, in general, does not commute with the operations of Cartesian product and inverse limit [8]. 
The fact that  the tensor completion commutes with direct limits allows one to reduce many 

questions on completions to the case of finitely generated groups. Indeed, let {Gi  (i E I);Tr~} be 
a direct spectrum of G composed of finitely generated groups Gi. Then G = lim Gi and G B " lim G B. 

) ) 

ifiI ifiI 

3.2. S u p e r c a t e g o r i e s  and  subca t ego r i e s  of t he  groups  w i t h  e x p o n e n t s .  By technical 
reasons, it is convenient to introduce some supercategories and subcategories of the groups with 
exponents. For instance, eliminating axiom (4) in the definition of a group with exponents we obtain 
Lyndon's supercategory ,CA ~ ~J~A- If, in addition, we remove axiom (3) then we obtain a wider 
supercategory 9tA D s On the other hand, one can revise the general notion of a group with 
exponents (for instance, in order to adapt it to a particular variety of groups) by adjoining some other 
axioms to axioms (1)-(4). In this way, there appears the category -~A of nilpotent A-groups in the 
sense of Ph. Hall [4]. 

The following question arises: which new categories of groups with exponents enjoy properties 
similar to those of 3.1? 

Examination of the arguments of the previous subsection shows that,  for tensor completion in a 
givenclass 9t C ~{A of groups (in signature or A of A-operator groups) to exist, it is sufficient for the class 
9t to be closed under Cartesian products and subsystems; moreover, ~ must contain the trivial group. 
The conditions indicated are automatically satisfied if ~t is a quasivariety of groups in signature ~r A. 
Thus, removing some axioms from (1)-(4) (for instance, by passing to the supercategories ,CA or 
9~A) or adding quasi-identities as new axioms (for instance, by considering the subcategory -~A,,~ of 
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nilpotent A-groups in the sense of Ph. Hall of nilpotency class n) we obtain various categories of 
groups with exponents in which tensor completion exists and is unique up to A-isomorphism; the 
operation of tensor completion is a functor, and this functor admits canonical factorization. 

3.3. T h e  c a t e g o r y  of p a r t i a l  g roups  w i th  e x p o n e n t s .  It is convenient to construct a tensor 
completion of a given group step by step by successively "adjoining exponents." This method leads to 
the notion of partial A-group. Also, some group operations over A-groups lead to partial A-groups. 
Let A be a ring and let G be a group. 

DEFINITION 13. The group G is said to be a partial A-group if raising to a power is defined for 
some (not necessarily all) pairs (g, c0, with each of the axioms (1)-(4) of the definition of A-group 
fulfilled whenever both sides of the axiom are defined. We denote the class of partial A-groups by ~A. 

EXAMPLE 4. Let A be a subring of a ring B. Then every A-group is a partial B-group. 

DEFINITION 14. Let H, G E ~A. A homomorphism of groups ~o : G ---* H is called a partial 
A-homomorphism if (ga)~ = (g~,),~ for all pairs (g, a) such that  the element g~ is defined. 

It is straightforward that  ~A is a subcategory of 9JtA. 

P r o p o s i t i o n  15. In the category ~A there exist direct, Cartesian, and free products as well as 
direct and inverse limits. 

[] We examine the case of free products as an example. Let G1, G2 E ~A and G = G1 * G2. If H 
is a subgroup of G conjugate with one of the factors then we define a partial action of A on H so as 
to satisfy axiom (3) of the definition of a group with exponents. If an element g is not conjugate with 
any element of the factors and a ~ Z then we leave ga undefined. With this definition of the action 
of A on G, the free product becomes a partial A-group. [] 

The abelian partial A-groups in the category ~A are partial A-modules. Many general notions 
for A-modules can be carried over into the category of partial A-modules. 

For our purposes, it is important that the notion of tensor product of A-modules can be generalized 
to the notion of tensor product of partial A-modules. We define this notion in line with [9]. 

P r o p o s i t i o n  16. Let M and N be partial A-modules. There exists a pair (T,g) composed of 
a partial A-module T and a partial A-bilinear map g : M x N ~ T with the following property: 

for every partial A-module P and every A-bilinear map f : M x N ~ P there exists a unique 
A-linear map f l  : T ---* P such that f = gf~. (In other words, every partial bilinear map can be 
factored through T.) 

If  (T,g) and (T' ,g')  are two pairs 
for which gj  = g'. 

[] Uniqueness is proved in a 
module C. The elements of C are 
in A, i.e. expressions of the form 

with this property then there exists an A-isomorphism j : T -+ T' 

standard fashion. We will prove existence. Consider a free A- 
formal linear combinations of elements of M x N with coefficients 

i=l 
where ai E A, xi E M, yi E N. 

Let D denote the submodule of C that  is generated by the elements of the form 

( .  + . ' , y )  - ( . , , )  - ( . , u  + , ' )  - ( . , u )  - y ' ) ,  

on condition that  ax  is defined in M and ay in N. 
Put  T = C/D.  Given a basis element (x, y) E C, denote its image in T by x | y. The module T 

is generated by the elements of the form x | y; and it is clear from the definition that  they satisfy the 
relations 

(=+=')| | 
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In other words, the map g : M x N ---, T defined by the rule g(x, y) = z @ y is A-bilinear. 
Any map f from the product M x N into a partial A-module P is extendable by linearity to an 

A-module homomorphism f : C ---* P. If, in addition, f is partially A-bilinear then f vanishes on the 
generators of D and hence on the entire D. Therefore, f induces a unique partial A-homomorphism 
f '  from the module T into P such that f ' (x  | y) = f ( z ,y ) .  Thus, the pair (T,g) enjoys the desired 
property. [] 

REMARK 1. The above constructed module T is called the tensor product of modules M and N 
and is denoted by M | N, or simply M | N in case it is clear which ring A is implied. Notice that 
the tensor product M | N of partial A-modules is an ordinary A-module. 

REMARK 2. If, in the definition of tensor completion, we replace the condition that  A : G ---* G B 
and qa : G ---* H are A-homomorphisms with the condition that they are partial A-homomorphisms 
then we arrive at the definition of tensor completion of a partial A-group. In exactly the same way 
one can define the categories of partial A-groups ~s ~9~A, and ~-~A that  correspond to ,l~A, 9~A, 
and ~A" 

w 4. Free C o n s t r u c t i o n s  

We introduce the notion of a free A-group. Let A be a commutative ring with unity and let X be 
an arbitrary set. 

DEFINITION 15. An A-group FA(X) with an A-generating set X is called a free A-group with 
basis X if, given an arbitrary A-group G, every map r : X --, G is extendable to a homomorphism 
tp : FA(X) --* G. The set X is called the set of free A-generators for FA(X). The cardinal number 
IXl is called the rank of FA(X). 

T h e o r e m  4. For any X and A, the free A-group FA(X) exists and is unique up to A- 
isomorphism. 

[] Let F(X)  be an ordinary free group. Then a tensor A-completion of it is a free A-group with 
basis X. Indeed, let qo0 : X ~ G be an arbitrary map from X into an A-group G: 

x �9 F ( X )  

a . ( F ( x ) l  A 

The map T0 is extendable to a homomorphism ~vl : F(X)  ---, G by the property of a free group. This 
homomorphism is, in turn, extendable to an A-homomorphism r : (F(X))  A ---* G. It follows that 
(F(X))  A is a free A-group with basis X. Uniqueness follows from that of tensor completion. [] 

Now we introduce the construction of free product in the category of A-groups. 

DEFINITION 16. Let Gi, i E I, be A-groups. An A-group *AGi is called the free product in the 
category 92~A if the A-homomorphisms qai : Gi ---* *AGi are such that for arbitrary A-homomorphisms 
r : Gi --* H, where H is an arbitrary A-group, there exists an A-homomorphism r : *AGi ---* H 
making the diagrams 

X " *AGi 

~'l, J / ~  (i E I) 
H 

commutative and *AGi is A-generated by the set {qoi(gi), gi e Gi, i E I}. 
By the categorical argument, the group *AGi is unique up to A-isomorphism. 

T h e o r e m  5. Let A be a ring containing the ring Z of integers as a subring and let Gi, i 6 I, 
be some set of A-groups. Then *AGi "~ (*Gi) A. 
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[] Let q0 ~ : Gi ~ *Gi be canonical embeddings. Since, by Proposition 15, the free product 
possesses the structure of a partial A-group, the construction of tensor completion applies to it. 

Let A : *Gi ~ (*Gi) A be the canonical map from the definition of tensor completion. Put 
A o ~0 ~ = ~oi. The family ~oi : Gi ---* (*AGi) A is a family of A-homomorphisms. Let r : Gi ---* H be 
arbitrary A-homomorphisms. In order to prove that (*Gi) A is a free product in the category 9YtA, we 
must complete the diagram 

Gi , *Gi 

H ,  ( ,Gi) A 

up to a commutative one. 
By the definition of free product in the category ~)'tA, there exists a partial A-homomorphism 

tp : *AGi -'-* H.  By universality of tensor completion, there exists an A-homomorphism r extending ~o. 
It is the one sought. The condition that (*AGi) A is generated by the images ~oI(Gi) is satisfied too. 
Therefore, ( .AGi )  A is a free product in ffJIA. [] 

It is easy to give a categorical definition of the construction of amalgamated free product for 
A-groups. However, it is not always possible to define some structure of a partial A-group on such 
a product. Therefore, one cannot apply the construction of tensor A-completion to it. In case some 
structure of a partial A-group is definable, the explicit description for the construction of amalgamated 
free product is the same as that for free products. 
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