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Bounded algebraic sets over a free Lie algebra F over a field k are classified in three equivalent
languages: (1) in terms of algebraic sets; (2) in terms of radicals of algebraic sets; (3) in terms
of coordinate algebras of algebraic sets.

INTRODUCTION

The objective of the present paper is to form a groundwork for algebraic geometry over a free Lie algebra
F over a field k. A basic task of algebraic geometry over an algebraic system is to describe algebraic sets
over that system. As a rule, this problem is extremely difficult to tackle. In choosing a free Lie algebra F
to be an algebraic system over a field k, therefore, the problem is confined to describing algebraic sets over
F in terms of sets of the following two types:

(1) algebraic sets defined by systems of equations in one variable;
(2) bounded algebraic sets, that is, sets that lie inside an n-dimensional parallelepiped. (For a formal

definition of n-parallelepipeds, see Sec. 2.)
In Sec. 6, we show that the classification of algebraic sets of the first type reduces to classifying sets of

the second. In this paper, we are mainly concerned with examining the latter.
In classifying bounded algebraic sets over an algebra F , use will be made of three equivalent languages

— namely, we describe them in terms of: (1) algebraic sets; (2) radicals of algebraic sets; (3) coordinate
algebras of algebraic sets.

In Sec. 1, following [1, 2], we outline foundations of algebraic geometry over algebraic systems, and we
cite some of the basic notions and results bearing on algebraic geometry over groups. Elements of algebraic
geometry over Lie algebras were considered at length in [3]. Relevant results on algebraic geometry over
metabelian Lie algebras can be found in [4-6].

In Sec. 2, we introduce the notion of an n-dimensional parallelepiped, and we show that this set from
Fn = F × F × . . .× F︸ ︷︷ ︸

n

is algebraic. In Sec. 3, we couch the definition of a bounded algebraic set, which is

the main notion of our paper, and we look into the equivalence of different ways of defining this.
In Sec. 4, which takes center-stage in our account, we show how Diophantine geometry of a ground field

k relates to algebraic geometry inside a fixed n-parallelepiped V. We construct appropriate translators in
the various languages. The basic, generalizing result is Theorem 4.7, which gives an exact description of
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the interplay between algebraic geometry inside V and Diophantine geometry of an affine space km, where
m is a natural number, depending on V.

In Sec. 5, we develop the idea of there being a correspondence between bounded algebraic sets over
algebras F and algebraic sets over a field k, but without specifying an parallelepiped V explicitly. The main
result of this section is Theorem 5.3, which deals in the correspondence between objects of the categories
BAS(F ) and AS(k) • Aff (F ). It turns out that algebraic geometry over an algebra F is not simpler than
that over a field k, and includes the latter as its part. Bounded algebraic sets over F are most simple to
describe for the case of a finite field k — these are all possible combinations of points.

In the final Sec, 6, we describe algebraic sets over a free Lie algebra F , defined by systems of equations
in one variable (briefly, in dimension one). In Theorem 6.2, it is shown that these are either bounded sets
or the whole algebra F . In conclusion we give a list of the properties of a free Lie algebra used in our
account. It is not hard to verify that those hold true also for a free anticommutative algebra, hence all the
results of the present paper hold for it, too. (Pertinent information on Lie algebras, in particular, on a free
Lie algebra F , can be found in [7, 8].)

1. ELEMENTS OF ALGEBRAIC GEOMETRY

In this section we give basic facts concerning algebraic geometry over Lie algebras. Let k be any field
and let A be a fixed Lie algebra over k. In constructing the algebraic geometry over A, we assume that
the elements of A are coefficients involved in representations of equations. Let X = {x1, . . . , xn} be a finite
set of unknowns. An algebra A[X ] = A ∗ F (X) is called a free A-algebra, generated by the alphabet X .
Here, F (X) is a free Lie algebra generated by the set X , and ∗ stands for a free Lie product of Lie algebras.
Elements like

f = f(x1, . . . , xn) = f(x1, . . . , xn, a1, . . . , ar) ∈ A[X ],

where a1, . . . , ar ∈ A are constants, are said to be polynomials in variables x1, . . . , xn with coefficients from
A. Equating the polynomial f to zero yields an equation over A. An arbitrary subset S of the algebra
A[X ] is called a system of equations over A. In the present paper, solutions for the equations f ∈ A[X ] are
searched for in the algebra A proper — this is the so-called Diophantine geometry over A.

An affine n-dimensional space over A is the set

An = {(b1, . . . , bn) | bi ∈ A}.

Point p = (b1, . . . , bn) ∈ An is called the root of a polynomial f ∈ A[X ] if

f(p) = f(b1, . . . , bn, a1, . . . , ar) = 0.

Similarly, point p ∈ An is called the root (solution) of a system S ⊆ A[X ] if p is a root of every polynomial
in S.

An algebraic set over an algebra A solving S is the set

V (S) = {p ∈ An | f(p) = 0 ∀ f ∈ S}.

Two systems of equations, S1 and S2, are said to be equivalent if V (S1) = V (S2). System S is inconsistent
over A if V (S) = ∅. Let Y ⊆ An. Then the radical of a set Y is the set

Rad(Y ) = {f ∈ A[X ] | f(p) = 0 ∀ p ∈ Y }.
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Obviously, the radical of every set is an ideal of the algebra A[X ]. We also speak of radicals of systems
of equations. If S ⊆ A[X ] then Rad(S) = Rad(V (S)). Thus the radical of a system S consists of all
polynomials that vanish at all solutions for S. A polynomial f ∈ A[X ] is called a consequence of S if
f ∈ Rad(S). Alternatively, f is a consequence of S iff the system S′ = S ∪ {f} is equivalent to S. In other
words, Rad(S) is a maximal system of equations equivalent to S. If, however, S is inconsistent, then its
radical is the whole algebra A[X ] by definition. The radical of an algebraic set defines that set uniquely.
Alternatively, if Y1, Y2 ⊆ An are algebraic sets, then

Y1 = Y2 ⇔ Rad(Y1) = Rad(Y2).

The next notion that is of importance in algebraic geometry is that of a coordinate algebra. The factor
algebra

Γ(Y ) = Γ(S) = A[X ]/Rad(Y )

is called the coordinate algebra of an algebraic set Y (or system S, Y = V (S)). As distinct from the
radical, the coordinate algebra defines an algebraic set only up to isomorphism. (See below for definition
of isomorphism between algebraic sets.)

The main goal of algebraic geometry over an algebra A is describing algebraic sets over A. As noted,
this can be done in three equivalent languages:

(1) in terms of algebraic sets;
(2) in terms of radicals of algebraic sets;
(3) in terms of coordinate algebras of algebraic sets.
A proof that these approaches are equivalent can be found in [1] or [3]. In the present account the basic

problem of algebraic geometry over a free Lie algebra is treated in all the three languages.

Categories. A basic result of algebraic geometry over any algebraic system is an equivalence theorem
for categories of algebraic sets and their coordinate algebras. The category of coordinate algebras is a
subcategory in the category of Lie A-algebras. Recall that a Lie algebra B over a field k is called an
A-algebra if it contains a distinguished subalgebra isomorpic to A. A homomorphism ϕ : B1 → B2 between
A-algebras B1 and B2 is called an A-homomorphism if ϕ(a) = a for all a ∈ A. The class of Lie A-
algebras form a category whose morphisms are A-homomorphisms. Obviously, the coordinate algebra of
any consistent system S ⊂ A[X ] of equations is a Lie A-algebra. (If S is inconsistent then Γ(S) = 0.) Thus
the coordinate algebras of the non-empty algebraic sets over A form a complete subcategory in the category
of all Lie A-algebras. We denote this subcategory by CA(A).

Objects of the category of algebraic sets are all possible algebraic sets over A. Morphisms are defined
via polynomial maps. More precisely, for algebraic sets Y ⊆ An and Z ⊆ Ad, the map φ : Y → Z is a
morphism in the category of algebraic sets if there exist polynomials f1, . . . , fd ∈ A[x1, . . . , xn] such that
for any point (b1, . . . , bn) ∈ Y ,

φ(b1, . . . , bn) = (f1(b1, . . . , bn), . . . , fd(b1, . . . , bn)) ∈ Z.

Algebraic sets Y and Z are said to be isomorphic if there exist counter-morphisms φ : Y → Z and θ : Z → Y

such that θφ = 1Y and φθ = 1Z . The category of algebraic sets is denoted by AS(A).

THEOREM 1.1 (on the equivalence of categories of algebraic sets and coordinate algebras). The
category AS(A) of algebraic sets over a Lie algebra A is equivalent to the category CA(A) of coordinate Lie
A-algebras. In particular, the algebraic sets Y and Z over A are isomorphic if and only if their coordinate
algebras are A-isomorphic, that is, Γ(Y ) ∼=A Γ(Z).
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For proofs of the theorems given in the present section, we ask the reader to consult [1] or [3]. The
correspondence stated in the equivalence theorem for categories is constructed using two contravariant
functors. In so doing, with every algebraic set we associate its coordinate algebra, and given a coordinate
algebra, its associated algebraic set is reconstructed, up to isomorphism, in the category of algebraic sets.

Coordinate algebras. Ambiguity in reconstructing an algebraic set from a coordinate algebra stems
from the fact that the coordinate algebra is defined as some factor algebra. To do away with this, for
instance, we can pass from the abstract definition of a coordinate algebra Γ(Y ) to its concrete representation,
Γ(Y ) = 〈X,R〉A, in the category of Lie A-algebras, using X the set of generating elements and R = Rad(Y )
the set of defining relations.

In this paper, we use a quite definite realization of coordinate algebras in some algebra Ā (for definition,
see below). Under such a realization, the relationship between Y and Γ(Y ) is defined more explicitly.

A representation for coordinate algebras given below is obtained from the following representation of
the radical Rad(S) of an algebraic set V (S):

Rad(S) =
⋂

p∈V (S)

Kerϕp,

where ϕp : A[X ] → A is an A-homomorphism computing polynomials at a fixed point p ∈ An, which acts
by the rule

f ∈ A[X ], ϕp(f) = f(p) ∈ A,
with A[X ]/Kerϕp

∼= A.
Denote by Ā =

∏
i∈I

A(i) a Cartesian product of copies of A, in which the index set I has cardinality

max{ℵ0, |A|}. Ā is an A-algebra, and we assume that A is embedded in the Cartesian product Ā diagonally.

THEOREM 1.2. Let Y ⊆ An be an algebraic set over an algebra A. Then the coordinate algebra Γ(Y )
is A-embedded in the algebra Ā. Conversely, every finitely generated A-subalgebra of Ā is a coordinate
algebra, for some algebraic set over A.

Theorem 1.2 yields a realization of coordinate algebras in the Cartesian product
∏
i∈I

A(i), which will be

made use of below. We re-word the results of Theorems 1.1 and 1.2 so as to tailor them to the form which
will be more suitable for our further reasoning (Thm. 1.3).

Definition. Let Y ⊆ An be an algebraic set over a Lie algebra A. We say that an n-generated
A-subalgebra of Ā =

∏
i∈I

A(i) such as

C = 〈A, x1, . . . , xn〉, x1, . . . , xn ∈ Ā,

is a realization of the coordinate algebra Γ(Y ) in the algebra Ā if the complete set R ⊂ A[X ] of relations
on generators x1, . . . , xn ∈ Ā coincides with Rad(Y ).

In the definition above, it is essential that the number n of generators coincides with the dimension of
an affine space An, in which Y is realized itself, and, moreover, the generators x1, . . . , xn ∈ Ā are fixed so
that R = Rad(Y ). However, even these restrictions fail to guarantee that the coordinate algebra Γ(Y ) will
be uniquely realized in the Cartesian product Ā. Namely, we have

Remark. Let C = 〈A, x1, . . . , xn〉 and C̃ = 〈A, x̃1, . . . , x̃n〉 be n-generated A-subalgebras of Ā, and
let R, R̃ ⊂ A[X ] be the complete relation sets on generators x1, . . . , xn and x̃1, . . . , x̃n, respectively. The
algebras C and C̃ are realizations in Ā of the coordinate algebra of the same algebraic set iff R = R̃.
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THEOREM 1.3. Let Y ⊆ An be an algebraic set of a Lie algebra A. Then its coordinate algebra
Γ(Y ) has a realization as a finitely generated A-subalgebra of the algebra

∏
i∈I

A(i), that is,

Γ(Y ) = 〈A, x1, . . . , xn〉, x1, . . . , xn ∈
∏
i∈I

A(i),

such that x1, . . . , xn can be chosen so that Y = {(x(i)
1 , . . . , x

(i)
n ) | i ∈ I}.

Conversely, if C = 〈A, x1, . . . , xn〉, x1, . . . , xn ∈ Ā, is a finitely generated A-subalgebra of Ā =
∏
i∈I

A(i),

then there exists a unique algebraic set Y over A such that C is a realization of the coordinate algebra
Γ(Y ) in Ā. In this case Y ⊇ {(x(i)

1 , . . . , x
(i)
n ) | i ∈ I}.

2. ALGEBRAIC SETS: PARALLELEPIPEDS

Let F be a free finitely generated Lie algebra over a field k. We write a ◦ b to denote the product of
elements a, b ∈ F . By writing a1 ◦ a2 ◦ . . . ◦ an we mean a product of the elements a1, a2, a3, . . . , an with a
left-normed placement of parentheses such as

(. . . ((a1 ◦ a2) ◦ a3) ◦ . . .) ◦ an.

Multiplication of a ∈ F by coefficients in k is denoted αa, α ∈ k, or α · a. First, we present some examples
of algebraic sets over F .

Finite-dimensional affine spaces. We claim that every finite-dimensional linear subspace V of F is
an algebraic set, that is, a solution for the equation s(x) = 0 in one variable x over F . We give a detailed
description of the equations whose solutions are zero-, one-, and two-dimensional subspaces in F .

A 0-ary subspace is a solution for s0(x) = x = 0. We take an arbitrary non-zero element v1 ∈ F . Then
the solution for s1(x) = x ◦ v1 = 0 is, as is known, a one-dimensional subspace V = link{v1}.

Now, let v1, v2 ∈ F be a linearly independent pair of elements and let V = link{v1, v2}. We construct
an equation s2(x) = (x ◦ v1) ◦ (v2 ◦ v1) = 0. To do this, we verify that V = V (s2). Obviously, all elements
of V satisfy s2(x) = 0. The element v2 ◦ v1 is not equal to zero since v1 and v2 are linearly independent. If
v is a solution for s2(x) then v ◦ v1 = α2(v2 ◦ v1) for some α2 ∈ k. Consequently, (v − α2v2) ◦ v1 = 0, and
hence v − α2v2 = α1v1 for some α1 ∈ k. Thus v = α1v1 + α2v2, that is, v ∈ V .

For the case of many-dimensional linear subspaces, we introduce the following notation:
s1(x) = s1(x, v1) = x ◦ v1 is an equation over F , depending on a variable x and on a constant v1 ∈ F ;
s2(x) = s2(x, v1, v2) = s1(x, v1)◦s1(v2, v1) = (x◦v1)◦(v2◦v1) is an equation depending on two constants

v1, v2 ∈ F ;
s3(x) = s3(x, v1, v2, v3) = s2(x) ◦ s2(v3) = ((x ◦ v1) ◦ (v2 ◦ v1)) ◦ ((v3 ◦ v1) ◦ (v2 ◦ v1));
. . .

sm(x) = sm(x, v1, . . . , vm) = sm−1(x) ◦ sm−1(vm) = sm−1(x, v1, . . . , vm−1) ◦ sm−1(vm, v1, . . . , vm−1);
. . . .

All equations sm(x) = 0 have, in their representations, one occurrence of the variable x and are therefore
linear in x. Furthermore, sm(0) = 0. Hence solutions for sm(x) = 0 are liner subspaces in F .

LEMMA 2.1. Let v1, . . . , vm ∈ F be linearly independent elements. Then

link{v1, . . . , vm} = V (sm), sm(x) = sm(x, v1, . . . , vm).
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The proof is by induction on m. The base of induction was verified above. We show that
link{v1, . . . , vm} ⊆ V (sm). The equation sm(x) = 0 is linear in x, and so we need only show that
v1, . . . , vm ∈ V (sm). By the inductive assumption, sm−1(vi) = 0 for i = 1, . . . ,m − 1. Hence
sm(vi) = sm−1(vi)◦sm−1(vm) = 0, i = 1, . . . ,m−1. For i = m, we have sm(vm) = sm−1(vm)◦sm−1(vm) = 0.
Thus link{v1, . . . , vm} ⊆ V (sm).

Now, we take an arbitrary element v ∈ V (sm) and show that v ∈ link{v1, . . . , vm}. Since vm /∈
link{v1, . . . , vm−1}, and by the inductive assumption, sm−1(vm) �= 0, it follows that sm(v) = sm−1(v) ◦
sm−1(vm) = 0 implies sm−1(v) = αmsm−1(vm) for some αm ∈ k. In view of the fact that sm−1(x) is linear,
we conclude that sm−1(v−αmvm) = 0. By the inductive assumption, v−αmvm ∈ link{v1, . . . , vm−1}, and
hence v ∈ link{v1, . . . , vm}. �

Thus all finite-dimensional spaces in F are algebraic sets. Moreover, affine translations of such spaces
will be algebraic sets as well. We take linearly independent elements v1, . . . , vm ∈ F and any element c ∈ F .
By Lemma 2.1, V = link{v1, . . . , vm} is an algebraic set, that is, it consists of solutions for sm(x) = 0.
Consequently, the affine subspace V + c is an algebraic set solving sm(x − c) = 0.

Parallelepipeds. Generalizing the results above to the case of systems of equations in several variables,
we obtain

Proposition 2.2. Let Vi, i = 1, . . . , n, be finite-dimensional linear subspaces of an algebra F , and let
c1, . . . , cn ∈ F be arbitrary elements. Then the Cartesian product V = (V1 + c1)× . . .× (Vn + cn) ⊂ Fn of
affine spaces is an algebraic set over F . The set V solves a splitting system S of equations in n variables,
that is,

S = {sm1(x̄), . . . , smn(x̄)},
sm1(x̄) = sm1(x1 − c1, x2, . . . , xn) = sm1(x1 − c1), m1 = dimk V1,

. . .

smn(x̄) = smn(x1, x2, . . . , xn − cn) = smn(xn − cn), mn = dimk Vn.

Sets such as V in Proposition 2.2 are called n-parallelepipeds. These will play an important role in
our further reasoning. We will often speak of a particular n-parallelepiped, which requires that we have
knowledge as to the ranks and bases for the affine spaces V1 + c1, . . . , Vn + cn. We give some relevant
notation.

By V = (V1 + c1)× . . .× (Vn + cn) ⊂ Fn we denote an n-parallelepiped, where Vi + ci, i = 1, . . . , n, are
finite-dimensional affine subspaces of F , and namely,

V1 + c1 : V1 = link{v1
1 , . . . , v

1
m1
}, dimk V1 = m1, c1 ∈ F,

V2 + c2 : V2 = link{v2
1 , . . . , v

2
m2
}, dimk V2 = m2, c2 ∈ F,

. . .

Vn + cn : Vn = link{vn
1 , . . . , v

n
mn
}, dimk Vn = mn, cn ∈ F.

By Proposition 2.2, V is an algebraic set over a free Lie algebra F . The radical Rad(V) is generated
by Lie polynomials sm1(x1 − c1), . . . , smn(xn − cn), which distinguish affine spaces V1 + c1, . . . , Vn + cn,
respectively. For a deeper insight into the n-parallelepiped V, we also look at its coordinate algebra. In this
section we give some preliminary information about the coordinate algebra Γ(V), which will be described
at length in Sec. 4 (Prop. 4.9).

Put F̄ =
∏
i∈I

F (i), which is a Cartesian product of the copies for F , where the index set I has cardinality
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|F |, k̄ =
∏
i∈I

k(i). By Theorem 1.3, Γ(V) has a realization as an n-generated F -subalgebra of F̄ , and namely,

Γ(V) = 〈F, x1, . . . , xn〉, x1, . . . , xn ∈ F̄ .

Proposition 2.3. Let Γ(V) = 〈F, x1, . . . , xn〉 be any realization of the coordinate algebra Γ(V) for
an n-parallelepiped V = (V1 + c1) × . . . × (Vn + cn) in the algebra F̄ =

∏
i∈I

F (i). Then the generators

x1, . . . , xn ∈ F̄ are representable as

x1 = t11v
1
1 + . . .+ t1m1

v1
m1

+ c1, t11, . . . , t
1
m1
∈ k̄,

. . .

xn = tn1v
n
1 + . . .+ tnmn

vn
mn

+ cn, tn1 , . . . , t
n
mn
∈ k̄.

Proof. By Theorem 1.3, for any realization Γ(V) = 〈F, x1, . . . , xn〉, we have V ⊇ {(x(i)
1 , . . . , x

(i)
n ) | i ∈ I}.

Hence x1, . . . , xn ∈ F̄ have the required representations. �

3. BOUNDED ALGEBRAIC SETS

Definition. An algebraic set Y ⊂ Fn is said to be bounded if Y is contained in some n-parallelepiped.
Clearly, all n-parallelepipeds are bounded sets, and if Y is a bounded set then there exist infinitely many
n-parallelepipeds containing Y .

The lemma below translates the definition of bounded algebraic sets into the language of radical ideals.

LEMMA 3.1. An algebraic set Y ⊂ Fn is bounded if and only if the radical Rad(Y ) contains n Lie
polynomials of the form sm1(x1 − c1), . . . , smn(xn − cn).

Proof. In fact, an algebraic set Y is contained in an n-parallelepiped V iff sm1(x1 − c1), . . . , smn(xn −
cn) ∈ Rad(Y ). �

In the category AS(F ) of all algebraic sets over F , we define a complete subcategory BAS(F ), whose
objects are bounded algebraic sets only.

LEMMA 3.2. Let Y ⊂ Fn and Z ⊂ F d be two algebraic sets over an algebra F for which there exists
an epimorphism φ : Y → Z, and Y is bounded. Then Z is also bounded.

Proof. Assume that V is an n-parallelepiped containing Y . Denote by f1, . . . , fd ∈ F [x1, . . . , xn] the
Lie polynomials defining φ, that is, for every point (b1, . . . , bn) ∈ Y ,

φ(b1, . . . , bn) = (f1(b1, . . . , bn), . . . , fd(b1, . . . , bn)) ∈ Z.

Since Y ⊆ V, we can write

b1 = α1
1v

1
1 + . . .+ α1

m1
v1

m1
+ c1, α1

1, . . . , α
1
m1
∈ k,

. . .

bn = αn
1 v

n
1 + . . .+ αn

mn
vn

mn
+ cn, αn

1 , . . . , α
n
mn
∈ k.

Substituting p = (b1, . . . , bn) ∈ Y in the Lie polynomials f1, . . . , fd yields

f1(p) = β1
1w

1
1 + . . .+ β1

l1
w1

l1
+ r1, β1

1 , . . . , β
1
l1
∈ k,

. . .

fd(p) = βd
1w

d
1 + . . .+ βd

ld
wd

ld
+ rd, βd

1 , . . . , β
d
ld
∈ k,
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where w1
1 , . . . , w

1
l1
, r1, . . . , w

d
1 , . . . , w

d
ld
, rd ∈ F are elements not depending on a point p ∈ Y . Only the

coefficients β1
1 , . . . , β

1
l1
, . . . , βd

1 , . . . , β
d
ld
∈ k depend on it. Let W = (W1 + r1) × . . . × (Wd + rd) be a d-

parallelepiped, where W1 = link{w1
1 , . . . , w

1
l1
}, . . . ,Wd = link{wd

1 , . . . , w
d
ld
}. It is clear that φ(Y ) ⊆ W.

Since φ is an epimorphism, φ(Y ) = Z; hence, Z is contained in W and Z is bounded. �

COROLLARY. Let Y and Z be isomorphic algebraic sets over F . If Y is a bounded set then Z is
also a bounded algebraic set. Therefore the category BAS(F ) of bounded algebraic sets is closed under
isomorphisms.

The description of algebraic sets inside V depends on a ground field k and is presented in Sec. 4.

Coordinate algebras of bounded algebraic sets. Denote by B(F̄ ) a subalgebra in F̄ =
∏
i∈I

F (i),

|I| = |F |, consisting of elements the degrees of coordinates of which are bounded in totality. We say that
B(F̄ ) is a bounded subalgebra. The next lemma delivers an extra characteristic for it.

LEMMA 3.3. The algebra B(F̄ ) is isomorphic to a tensor product B(F̄ ) ∼=F F ⊗k k̄, where k̄ =
∏
i∈I

k(i)

is the Cartesian product of copies of a field k of cardinality |F |.
Proof. There is a natural F -embedding ϕ : F ⊗k k̄ → F̄ , under which any element

t1v1 + . . .+ tmvm ∈ F ⊗k k̄, v1, . . . , vm ∈ F, t1, . . . , tm ∈ k̄,

is mapped to
w = t1v1 + . . .+ tmvm ∈ F̄ , w(i) = t

(i)
1 v1 + . . .+ t(i)m vm, i ∈ I.

Clearly, ϕ(F ⊗k k̄) ⊆ B(F̄ ) in this instance.
Conversely, let w ∈ B(F̄ ) and let the degrees of all elements w(i), i ∈ I (coordinates of w), not exceed

n. Then, in particular, every coordinate w(i) is a linear combination over k of regular Hall monomials of
degree at most n, whose number is finite. In other words, there are elements v1, . . . , vm ∈ F such that
w(i) = α

(i)
1 v1 + . . . + α

(i)
m vm for some α(i)

j ∈ k, i ∈ I. It follows that w = t1v1 + . . . + tmvm, where
t1, . . . , tm ∈ k̄, that is, w has a preimage in the tensor product F ⊗k k̄. �

Theorem 1.2 implies that all coordinate algebras of algebraic sets over F are F -subalgebras in the
Cartesian product F̄ =

∏
i∈I

F (i). In this case a same coordinate algebra has different realizations in F̄ (see

Thm. 1.3).

Definition. Let Y be an algebraic set over F . The coordinate algebra Γ(Y ) is said to be bounded if
there exists its realization in F̄ , lying in a bounded subalgebra B(F̄ ).

The fact that the property of being bounded for Γ(Y ) does not depend on its particular realization is
exemplified by the following:

LEMMA 3.4. Let C1 andC2 be F -isomorphic finitely generated F -subalgebras of F̄ , written C1
∼=F C2,

such that C1 is a subalgebra of a bounded algebra B(F̄ ). Then C2 is also a subalgebra of B(F̄ ).
Proof. Let ϕ : C2 → C1 be an F -isomorphism. We take an arbitrary element w ∈ C2 and show

that w ∈ F ⊗k k̄. Since ϕ(w) ∈ C1 and C1 ⊂ F ⊗k k̄, there exist elements v1, . . . , vm ∈ F for which
ϕ(w) = t1v1 + . . .+ tmvm, tj ∈ k̄, j = 1, . . . ,m. It follows that w = t̃1v1 + . . .+ t̃mvm for some t̃j ∈ k̄, j =
1, . . . ,m. Indeed, consider a Lie polynomial sm(x, v1, . . . , vm), defined as in Sec. 2. Clearly, sm(ϕ(w)) = 0,
and hence ϕ(sm(w)) = 0 and sm(w) = 0. Consequently, for every i ∈ I, there are α(i)

j ∈ k such that

w(i) = α
(i)
1 v1 + . . .+ α

(i)
m vm, whence the result. �

COROLLARY 1. If C1 and C2 are two realizations of the coordinate algebra Γ(Y ) in an algebra F̄ ,
and, moreover, if C1 is contained in a bounded subalgebra B(F̄ ), then C2 is also contained in B(F̄ ).
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Thus the coordinate algebra Γ(Y ) of an algebraic set Y over F is bounded iff any one of its realizations
in F̄ is contained in B(F̄ ).

Using Theorem 1.1 we arrive at

COROLLARY 2. Let Y and Z be isomorphic algebraic sets over F . If the coordinate algebra Γ(Y )
is bounded then the coordinate algebra Γ(Z) is also bounded.

We distinguish a complete subcategory, BCA(F ), of bounded coordinate algebras in the category,
CA(F ), of all coordinate algebras of algebraic sets over F .

Proposition 3.5. An algebraic set Y ⊂ Fn over a free Lie algebra F is bounded if and only if its
coordinate algebra Γ(Y ) is bounded.

Proof. Let Γ(Y ) = 〈F, x1, . . . , xn〉. In view of Corollary 1 to Lemma 3.4, the property of being bounded
for Γ(Y ) does not depend on the choice of its realization in F̄ . By Theorem 1.3, the generators x1, . . . , xn

can be chosen so that Y = {(x(i)
1 , . . . , x

(i)
n ) | i ∈ I}. It is clear that Γ(Y ) is bounded iff its generators

x1, . . . , xn belong to B(F̄ ), B(F̄ ) = F ⊗k k̄.
Suppose Y is a bounded set, Y ⊆ V, and V = (V1 + c1) × . . .× (Vn + cn) is an n-parallelepiped. Then

every point (b1, . . . , bn) ∈ Y has the form

b1 = α1
1v

1
1 + . . .+ α1

m1
v1

m1
+ c1, α1

1, . . . , α
1
m1
∈ k,

. . .

bn = αn
1 v

n
1 + . . .+ αn

mn
vn

mn
+ cn, αn

1 , . . . , α
n
mn
∈ k.

Consequently, x1 = {b(i)1 | i ∈ I}, . . . , xn = {b(i)n | i ∈ I} ∈ F ⊗k k̄.
Conversely, let x1, . . . , xn ∈ F ⊗k k̄, so that

xi = ti1v
i
1 + . . .+ timi

vi
mi

+ ci, ti1, . . . , t
i
mi
∈ k̄, i = 1, . . . , n.

Then (b1, . . . , bn) ∈ V, that is, Y ⊆ V. �

We conclude this section by describing the coordinate algebra Γ(Y ) of a given bounded algebraic set Y .
In the proof of Proposition 3.5, we brought out some representation of Γ(Y ) in F̄ , but that was a particular
realization for which Y = {(x(i)

1 , . . . , x
(i)
n ) | i ∈ I}. Nevertheless, we can see that the description of Γ(Y ) is

similar to that of the coordinate algebra for an n-parallelepiped (see Prop. 2.3).

Proposition 3.6. Let Y ⊂ Fn be a bounded algebraic set over a free Lie algebra F , and let V =
(V1 + c1)× . . .× (Vn + cn) be some n-parallelepiped.

(1) If Y ⊆ V then, for any realization Γ(Y ) = 〈F, x1, . . . , xn〉 of the coordinate algebra Γ(Y ) in F̄ , the
generators x1, . . . , xn have the following representation:

xi = ti1v
i
1 + . . .+ timi

vi
mi

+ ci, ti1, . . . , t
i
mi
∈ k̄, i = 1, . . . , n. (i)

(2) If, for some realization Γ(Y ) = 〈F, x1, . . . , xn〉, x1, . . . , xn have a presentation by (i), then Y ⊆ V.
Proof. Let Y ⊆ V. By Theorem 1.3, Y ⊇ {(x(i)

1 , . . . , x
(i)
n ) | i ∈ I}. It follows that V ⊇ {(x(i)

1 , . . . , x
(i)
n ) |

i ∈ I}, which yields the required representation for x1, . . . , xn.
Now, suppose that the coordinate algebra Γ(Y ) has a realization Γ(Y ) = 〈F, x1, . . . , xn〉 such that

the generators have a presentation by (i). Then the Lie polynomials sm1(x1 − c1), . . . , smn(xn − cn),
distinguishing the respective affine spaces V1+c1, . . . , Vn+cn, are relations on x1, . . . , xn ∈ F̄ . Consequently,
sm1(x1 − c1), . . . , smn(xn − cn) ∈ Rad(Y ) and Y ⊆ V. �
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Proposition 3.5 does not still yield a complete description of the coordinate algebra Γ(Y ) for a bounded
set Y since nothing has been said as yet about the coefficients t11, . . . , t

1
m1
, . . . , tn1 , . . . , t

n
mn
∈ k̄. The structure

of Γ(Y ) will be described in more detail in Sec. 4 (see Prop. 4.8).

4. ALGEBRAIC GEOMETRY INSIDE PARALLELEPIPED

In this section, we thoroughly examine bounded algebraic sets over an algebra F in a fixed n-
parallelepiped V. The relationship is instituted between algebraic geometry over F inside V and Diophantine
algebraic geometry over a ground field k.

We start by treating the case where n = 1. Fix a 1-parallelepiped V, that is, a finite-dimensional affine
space V = V + c ⊂ F , where V = link{v1, . . . , vm} is a linear space over a field k of dimension m, c ∈ F .
Below we show that there exists a one-to-one correspondence between algebraic sets over F , lying in V + c,
and algebraic sets over k, lying in an affine space km, that is,

YF ⊆ V + c↔ Yk ⊆ km.

Correspondence of algebraic sets. First, we define the following two correspondences between
algebraic sets:

(1) YF ⊆ V + c→ Yk ⊆ km;
(2) Yk ⊆ km → YF ⊆ V + c.
(1) Let YF ⊆ V + c be a bounded algebraic set. Put

Yk = {(α1, . . . , αm) ∈ km | α1v1 + . . .+ αmvm + c ∈ YF }, Yk ⊆ km.

(2) Let Yk be an algebraic set over a field k in dimension m. Put

YF = {α1v1 + . . .+ αmvm + c | (α1, . . . , αm) ∈ Yk}, YF ⊆ V + c.

The form of YF → Yk and Yk → YF is defined so that their composition, in any order, is identical. The fact
that these correspondences associate algebraic sets with algebraic sets will be proved below, in Lemmas 4.1
and 4.2. Preparatory to this, we bring out some relevant facts.

Correspondence of radical ideals. As is known, every algebraic set is uniquely defined by its radical.
In this case it seems convenient that the correspondences YF → Yk and Yk → YF between sets and similar
correspondences between their radicals will be constructed in parallel.

Below, the radical Rad(YF ) of a bounded algebraic set YF ⊆ V + c is associated with a radical ideal
Rad(Sk) of the ring k[y1, . . . , ym], and we prove that Rad(Sk) is exactly the radical of a set Yk. Inversely,
the radical Rad(Yk) of a bounded algebraic set over a field k is associated with a radical ideal Rad(SF ) of
the algebra F [x], and we prove that Rad(SF ) is exactly the radical of a set YF .

We start to define correspondences between the radicals with a correspondence between individual
polynomials in the algebra F [x] and in the ring k[y1, . . . , ym]. With an arbitrary Lie polynomial f(x) ∈ F [x]
we associate a finite system Sf ⊂ k[y1, . . . , ym] of equations such that

f(x) ∈ Rad(YF )⇔ Sf ⊂ Rad(Yk).

For clarity, we give a particular example. Let V = link{a1, a2}, where a1 and a2 are two distinct free
generators of F , c = 0, and YF ⊆ V . Take a Lie polynomial f(x) = (x◦a1)◦x− (a2 ◦a1)◦a2− (a2 ◦a1)◦a1.
Then

f(α1a1 + α2a2) = (α2
2 − 1) · (a2 ◦ a1) ◦ a2 + (α1α2 − 1) · (a2 ◦ a1) ◦ a1.

157



System Sf is defined by setting

{g1(y1, y2) = y2
2 − 1, g2(y1, y2) = y1y2 − 1}.

The elements a2a1a2, a2a1a1 ∈ F are linearly independent (see [7, 8]). Therefore

f(α1a1 + α2a2) = 0 ⇔ g1(α1, α2) = g1(α1, α2) = 0.

The same argument fits in the general case. Namely, we take a polynomial f(x) ∈ F [x] and exercise a
substitution x = p, where

p = α1v1 + . . .+ αmvm + c, α1, . . . , αm ∈ k,
assuming in so doing that the coefficients α1, . . . , αm are variables. Removing parentheses and collecting
similar terms, we obtain

f(p) = g1(α1, . . . , αm)u1 + . . .+ gs(α1, . . . , αm)us,

where u1, . . . , us ∈ F are some linearly independent elements not depending on a point p ∈ Y , and
g1, . . . , gp ∈ k[y1, . . . , ym] are polynomials. Clearly, in this case

f(α1v1 + . . .+ αmvm + c) = 0⇔ g1(α1, . . . , αm) = . . . = gs(α1, . . . , αm) = 0.

Therefore we put
Sf = {g1, . . . , gs} ⊂ k[y1, . . . , ym].

We define the inverse correspondence. Consider any polynomial g ∈ k[y1, . . . , ym] such as

g(y1, . . . , ym) =
∑

ī

αīy
i1
1 · . . . · yim

m , αī ∈ k, ī = (i1, . . . , im) ∈ N
m.

Let M1 = max{i1}, . . . , Mn = max{im}. With g(ȳ) we associate a Lie polynomial fg(x) so that

g(ȳ) ∈ Rad(Yk)⇔ fg(x) ∈ Rad(YF ).

In order to construct fg(x), we introduce some extra notation:
fm(x) = sm−1(x− c, v1, . . . , vm−1), where sm−1 is a Lie polynomial from Sec. 2;
fm−1(x) = sm−1(x− c, v1, . . . , vm−2, vm);
. . .

f1(x) = sm−1(x− c, v2, . . . , vm−1, vm).
Substituting in f1(x), . . . , fm(x) point x = p, where

p = α1v1 + . . .+ αmvm + c, α1, . . . , αm ∈ k,

we arrive at
fm(p) = αmbm, fm−1(p) = αm−1bm−1, . . . , f1(p) = α1b1,

where b1, . . . , bm ∈ F are non-zero elements.
We choose an element a ∈ F so that the degree of a is greater than the degrees of all elements b1, . . . , bm.

Then all possible products of the form ab1 . . . b1b2 . . . b2 . . . bm . . . bm are distinct from zero.
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The Lie polynomial fg(x) is defined thus:

fg(x) =
∑

ī

αīa ◦ f1(x) ◦ . . . ◦ f1(x)︸ ︷︷ ︸
i1

◦ b1 ◦ . . . ◦ b1︸ ︷︷ ︸
M1−i1

◦ . . . ◦ fm(x) ◦ . . . ◦ fm(x)︸ ︷︷ ︸
im

◦ bm ◦ . . . ◦ bm︸ ︷︷ ︸
Mm−im

.

Substituting point x = p in fg(x) yields

fg(p) = g(α1, . . . , αm) · a ◦ b1 ◦ . . . ◦ b1︸ ︷︷ ︸
M1

◦ . . . ◦ bm ◦ . . . ◦ bm︸ ︷︷ ︸
Mm

= g(α1, . . . , αm) · e,

where e ∈ F is a non-zero element. This implies

fg(α1v1 + . . .+ αmvm + c) = 0 ⇔ g(α1, . . . , αm) = 0.

We have thus defined the correspondences between individual polynomials of the algebra F [x] and of the
ring k[y1, . . . , ym].

Now, we define correspondences Rad(YF ) → Rad(Sk) and Rad(Yk) → Rad(SF ) between radical ideals,
setting

Rad(YF )→ Sk = {Sf | f ∈ Rad(YF )},
Rad(Yk) → SF = {fg(x) ∈ F [x] | g ∈ Rad(Yk)} ∪ sm(x− c, v1, . . . , vm),

where sm(x− c, v1, . . . , vm) = 0 is an equation distinguishing an affine space V + c.
We come back to YF → Yk and Yk → YF .

LEMMA 4.1. Let YF ⊆ V + c be a bounded algebraic set over F , and let Yk be the subset of an affine
space km specified above. Then Yk is an algebraic set over a field k and Yk = V (Sk), where the system
Sk ⊆ k[y1, . . . , ym] is defined as above.

Proof. We claim that Yk = V (Sk). Indeed, point (α1, . . . , αm) ∈ km belongs to Yk iff p = α1v1 +
. . . + αmvm + c belongs to YF . The inclusion p ∈ YF is equivalent to the fact that f(p) = 0 for any
f(x) ∈ Rad(YF ). In turn, f(p) = 0 iff g(α1, . . . , αm) = 0 for every g ∈ Sf . Consequently, p ∈ YF iff
(α1, . . . , αm) ∈ V (Sk). �

LEMMA 4.2. Let Yk ⊆ km be an algebraic set over a field k, and let YF be the subset of an affine
space V + c specified above. Then YF is an algebraic set over F , with YF = V (SF ), where the system
SF ⊆ F [x] is defined as above.

Proof. We claim that YF = V (SF ). Indeed, point p = α1v1 + . . . + αmvm + c belongs to YF iff
(α1, . . . , αm) ∈ Yk. The inclusion (α1, . . . , αm) ∈ Yk is equivalent to the fact that g(α1, . . . , αm) = 0 for
every polynomial g ∈ Rad(Yk). In turn, g(α1, . . . , αm) = 0 iff fg(p) = 0. Consequently, (α1, . . . , αm) ∈ Yk

iff p ∈ V (SF ). �

Thus the correspondences YF → Yk and Yk → YF associate algebraic sets with algebraic. Their compo-
sition in any order is identical, that is,

YF → Yk → YF = idAS(F ), Yk → YF → Yk = idAS(k).

Thus we have in fact proved the following:

THEOREM 4.3. The mappings YF → Yk and Yk → YF determine a one-to-one correspondence
YF ↔ Yk between algebraic subsets over F , lying in a finite-dimensional affine space V + c ⊂ F , V =
link{v1, . . . , vm}, c ∈ F , and algebraic sets over a field k, lying in an affine space km.
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COROLLARY 1. YF ↔ Yk associates an affine space V + c with an affine space km.

COROLLARY 2. Rad(YF ) ↔ Rad(Yk) determines a one-to-one correspondence between radical
ideals of the ring k[y1, . . . , ym] and radical ideals of the algebra F [x] containing a Lie polynomial sm(x −
c, v1, . . . , vm).

An algorithm of determining this correspondence may be simplified in this way.
(1) Let YF ⊆ V + c be a bounded algebraic set over F , and let YF = V (S′

F ), where S′
F is some system

of equations. Put S′
k = {Sf | f ∈ S′

F }; then S′
k ⊆ Sk, but Rad(S′

k) = Rad(Sk) = Rad(Yk).
The meaning of this simplification is that in order to define Rad(Yk), it suffices to use only those Lie

polynomials that generate Rad(YF ).
(2) Let Yk ⊆ km be an algebraic set over k, and let Yk = V (S′

k), where S′
k is some system of equations.

Put S′
F = {fg(x) | g ∈ S′

k} ∪ sm(x− c); then S′
F ⊆ SF , but Rad(S′

F ) = Rad(SF ) = Rad(YF ).

COROLLARY 3. Let YF ⊆ V + c be a bounded algebraic set over F , and let S ⊆ F [x] be a
system of equations for YF such that YF = V (S). Then there exists a finite subsystem S0 ⊆ S for which
YF = V (S0 ∪ sm(x− c, v1, . . . , vm)).

Proof. We construct the following system of equations over k:

S′
k = {g ∈ k[y1, . . . , ym] | g ∈ Sf , f ∈ S}.

By Corollary 2, S′
k and Sk are equivalent. In view of k being Noetherian over equations, there exists a finite

subsystem Sk,0 ⊆ S′
k, equivalent to S′

k. Thus Yk = V (Sk,0). For every polynomial g ∈ Sk,0, we fix a Lie
polynomial f ∈ S such that g ∈ Sf , and take the set of fixed polynomials to be S0. It is easy to verify that
point p = α1v1+. . .+αmvm+c belongs to Y = V (S) iff p ∈ V (S0). Consequently, YF = V (S0∪sm(x−c)). �

COROLLARY 4. If the ground field k is finite then any subset MF ⊆ V + c of an affine space V + c

is algebraic over F .
Proof. Indeed, for the case where k is a finite field, the subset Mk ⊆ km is algebraic. �

Correspondence of coordinate algebras. Above, we constructed one-to-one correspondences YF ↔
Yk and Rad(YF )↔ Rad(Yk) between algebraic sets and between radical ideals. Now, we describe a similar
correspondence in terms of coordinate algebras.

We assume that coordinate algebras of algebraic sets over F are realized in the Cartesian product
F̄ =

∏
i∈I

F (i), and coordinate rings of algebraic sets over k — in the Cartesian product k̄ =
∏
i∈I

k(i), in which

a diagonal subfield isomorphic to k is distinguished.

Definition. Let Yk ⊆ km be an algebraic set over a field k. We say that an m-generated k-subring of
k̄ such as

Ck = 〈k, t1, . . . , tm〉, t1, . . . , tm ∈ k̄,
is a realization of the coordinate ring Γ(Yk) in the ring k̄ if the complete relation set Rk ⊂ k[y1, . . . , ym] on
generators t1, . . . , tm ∈ k̄ coincides with Rad(Yk).

Let YF ⊆ V +c be a bounded algebraic set over an algebra F . Proposition 3.6 says that for any realization
Γ(YF ) = 〈F, x〉, x ∈ F̄ , of the coordinate algebra Γ(YF ) in F̄ , the generator x ∈ F̄ is representable as

x = t1v1 + . . .+ tmvm + c (∗)

for some coefficients t1, . . . , tm ∈ k̄. Conversely, if CF = 〈F, x〉 is some F -subalgebra of F̄ with generator
x ∈ F̄ in the form (∗), then CF is a realization of the coordinate algebra of a bounded algebraic set YF over
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F , with YF ⊆ V + c. Let

RF = {f(x) ∈ F [x] | f(t1v1 + . . .+ tmvm + c) = 0}

be the complete relation set with generator x ∈ F̄ . The next lemma establishes a one-to-one correspondence
between coordinate algebras of bounded algebraic sets YF ⊆ V + c over F and coordinate algebras of
algebraic sets Yk ⊆ km over k.

LEMMA 4.4. An F -algebra CF = 〈F, x〉, where x ∈ F̄ , x = t1v1+ . . .+tmvm +c, and t1, . . . , tm ∈ k̄, is
a realization of the coordinate algebra Γ(YF ) if and only if the k-subring Ck = 〈k, t1, . . . , tm〉 is a realization
of the coordinate ring Γ(Yk).

Proof. Repeating the argument used in the construction of Rad(YF )↔ Rad(Yk), with field coefficients
α1, . . . , αm ∈ k replaced by ring coefficients t1, . . . , tm ∈ k̄, we arrive at

RF = Rad(YF )⇔ Rk = Rad(Yk).

Now the required result follows immediately. �

The next result — a consequence of Lemma 4.4 — gives a description of the coordinate algebra Γ(YF )
of a bounded algebraic set YF ⊆ V + c.

Proposition 4.5. Let YF ⊆ V + c be a bounded algebraic set over an algebra F , and let Yk ⊆ km

be its corresponding algebraic set over a field k. An F -algebra CF = 〈F, x〉, x ∈ F̄ , is a realization of the
coordinate algebra Γ(YF ) if and only if the following hold:

(1) the generator x ∈ F̄ is representable as

x = t1v1 + . . .+ tmvm + c, t1, . . . , tm ∈ k̄;

(2) the complete relation set Rk on coefficients t1, . . . , tm ∈ k̄ coincides with Rad(Yk).
In particular, such algebras are all F -isomorphic.

The next proposition, which follows from the previous one, provides a description of the coordinate
algebra Γ(V + c) for an affine space V + c.

Proposition 4.6. Let V + c ⊂ F be a finite-dimensional affine space. An F -algebra CF = 〈F, x〉,
x ∈ F̄ , is a realization of the coordinate algebra Γ(V + c) if and only if the following hold:

(1) the generator x ∈ F̄ is representable as

x = t1v1 + . . .+ tmvm + c, t1, . . . , tm ∈ k̄;

(2) the coefficients t1, . . . , tm ∈ k̄ are such that:
(a) {(t(i)1 , . . . , t

(i)
m ) | i ∈ I} = km if k is finite;

(b) 〈k, t1, . . . , tm〉 is a ring of polynomials in the variables t1, . . . , tm (or else t1, . . . , tm are algebraically
independent over k) if k is infinite.

Proof. We need to show that for the case YF = V + c, conditions (2) in Propositions 4.5 and 4.6 are
equivalent. By Corollary 1 to Theorem 4.3, we have Yk = km. First we consider the case where |k| = ∞.
Then Rad(km) = 0, whence the result. If |k| < ∞ then |km| < ∞ and every subset Y ⊆ km is algebraic;
moreover, Rad(Y ) < Rad(km) if Y < km. �

General case. Translation between algebraic sets is possible also for the case of an arbitrary finite
dimension n > 1. We repeat the above argument verbatim, the only deviation being that the notation will
be more complex.
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Let V = (V1 + c1)× . . .× (Vn + cn) be a fixed n-parallelepiped. Similarly to the one-dimensional case,
we define the correspondence YF ↔ Yk between bounded algebraic sets in V and algebraic sets in the affine
space kM as follows:

YF = {(α1
1v

1
1 + . . .+ α1

m1
v1

m1
+ c1, . . . , α

n
1v

n
1 + . . .+ αn

mn
vn

mn
+ cn)} ⊆ V ↔

Yk = {(α1
1, . . . , α

1
m1︸ ︷︷ ︸

m1

, . . . , αn
1 , . . . , α

n
mn︸ ︷︷ ︸

mn

)} ⊆ kM

(here M = m1 + . . .+mn).
An analog of Theorem 4.3 is also true. We have

THEOREM 4.7. Let Vi + ci, i = 1, . . . , n, be finite-dimensional affine subspaces of F (in dimensions
m1, . . . ,mn, respectively), and let V = (V1 + c1) × . . . × (Vn + cn) ⊂ Fn be an n-parallelepiped. Then
YF ↔ Yk is a one-to-one correspondence between algebraic sets over F , lying in the n-parallelepiped V, and
algebraic sets over k, lying in the affine space kM , where M = m1 + . . .+mn.

The corollaries below also repeat those plugged in Theorem 4.3, and are proved similarly.

COROLLARY 5. The correspondence YF ↔ Yk associates an affine space kM with the whole n-
parallelepiped.

COROLLARY 6. There exists a one-to-one correspondence between radical ideals of a polynomial ring
k[y1

1, . . . , y
1
m1
, . . . , yn

1 , . . . , y
n
mn

] and radicals of bounded algebraic sets over F lying in an n-parallelepiped
V. The latter may be characterized in terms of radical ideals of an algebra F [x1, . . . , xn], which contain Lie
polynomials sm1(x1 − c1), . . . , smn(xn − cn) distinguishing affine spaces V1 + c1, . . . , Vn + cn, respectively.

COROLLARY 7. Let YF be any bounded algebraic set over F . Then there exists a finite system
S0 ⊂ F [X ] of equations such that YF = V (S0).

Proof. In fact, every bounded algebraic set YF is contained in some n-parallelepiped V. Inside V, we
may define Y by finitely many equations in the same way as we did for the one-dimensional case. To these
equations, then, we must add n equations sm1(x1 − c1), . . . , smn(xn − cn) defining V, which ultimately will
yield the desired finite system S0. �

COROLLARY 8. If the ground field k is finite then any subset MF ⊆ V of an n-parallelepiped V is
algebraic over F .

COROLLARY 9. Let YF ⊆ V be a bounded algebraic set over an algebra F and let Yk ⊆ kM be its
corresponding algebraic set over a field k. An F -algebra CF = 〈F, x1, . . . , xn〉, x1, . . . , xn ∈ F̄ , where

xi = ti1v
i
1 + . . .+ timi

vi
mi

+ ci, ti1, . . . , t
i
mi
∈ k̄, i = 1, . . . , n,

is a realization of the coordinate algebra Γ(YF ) if and only if a k-subring Ck = 〈k, t11, . . . , t1m1
, . . . ,

tn1 , . . . , t
n
mn
〉 is a realization of the coordinate ring Γ(Yk).

As in the one-dimensional case, we have two propositions.

Proposition 4.8. Let YF ⊆ V be a bounded algebraic set over an algebra F and let Yk ⊆ kM be
its corresponding algebraic set over a field k. An F -algebra CF = 〈F, x1, . . . , xn〉, x1, . . . , xn ∈ F̄ , is a
realization of the coordinate algebra Γ(YF ) if and only if the following hold:

(1) the generators x1, . . . , xn ∈ F̄ are representable as

xi = ti1v
i
1 + . . .+ timi

vi
mi

+ ci, ti1, . . . , t
i
mi
∈ k̄, i = 1, . . . , n;
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(2) the complete relation set Rk on coefficients t11, . . . , t
1
m1
, . . . , tn1 , . . . , t

n
mn
∈ k̄ coincides with Rad(Yk).

In particular, such algebras are all F -isomorphic.

Proposition 4.9. Let V = (V1 + c1) × . . . × (Vn + cn) ⊂ Fn be an n-parallelepiped. An F -algebra
CF = 〈F, x1, . . . , xn〉, x1, . . . , xn ∈ F̄ , is a realization of the coordinate algebra Γ(V) if and only if the
following hold:

(1) the generators x1, . . . , xn ∈ F̄ are representable as

xi = ti1v
i
1 + . . .+ timi

vi
mi

+ ci, ti1, . . . , t
i
mi
∈ k̄, i = 1, . . . , n;

(2) the coefficients t11, . . . , t
1
m1
, . . . , tn1 , . . . , t

n
mn
∈ k̄ are such that:

(a) {((t11)(i), . . . , (t1m1
)(i), . . . , (tn1 )(i), . . . , (tnmn

)(i)), | i ∈ I} = kM if k is finite;
(b) 〈k, t11, . . . , t1m1

, . . . , tn1 , . . . , t
n
mn
〉 is a ring of polynomials in the variables t11, . . . , t

1
m1
, . . . , tn1 , . . . , t

n
mn

(or else t11, . . . , t
1
m1
, . . . , tn1 , . . . , t

n
mn

are algebraically independent over k) if k is infinite.
What is the difference between the n- and one-dimensional cases for m = M , M = m1 + . . . + mn?

In either case bounded algebraic sets over F are in one-to-one correspondence with algebraic sets over k
lying in kM . For m = M , therefore, there are as many one-dimensional algebraic sets in the affine space
V + c as there are bounded algebraic sets inside the n-parallelepiped V. The difference is that in the
n-dimensional case, the construction of YF ↔ Yk proceeds by initially placing in kM “partitions” between
variables y1

1 , . . . , y
1
m1
| . . . |yn

1 , . . . , y
n
mn

, dividing the set of the variables into n parts. For algebraic sets, the
difference between the sorted and the monolith varieties kM is inessential. This stands out in treating the
category AS(k) of algebraic sets over k as a whole, for the concept of placing partitions is not described in
terms of morphisms of algebraic sets.

5. CLASSIFICATION OF BOUNDED ALGEBRAIC SETS

In this section we develop the idea of there being a correspondence between bounded algebraic set over
an algebra F and algebraic sets over a field k, but not assuming, in this instance, that an n-parallelepiped
is initially fixed. Our main goal is to describe objects of BAS(F ), the category of all bounded algebraic
sets over F , via translations into AS(k), the category of algebraic sets over k.

By definition, every bounded algebraic set YF over F is contained in some n-parallelepiped V. Inside V,
in a one-to-one correspondence with YF is an algebraic set Yk ⊆ kM over k. However, the correspondence
YF → Yk • V, which associates a bounded set YF with a pair “n-parallelepiped V and algebraic set Yk,”
appears inconvenient: such is not unique since V is not a sole n-parallelepiped in which YF is contained.
We can get around this situation by defining a minimal n-parallelepiped of a bounded algebraic set YF .

Minimal n-parallelepiped. Let YF ⊂ Fn be an arbitrary n-dimensional bounded algebraic set over
F . Denote by VY the intersection of all n-parallelepipeds containing YF . Clearly,

(a) VY is also an n-parallelepiped;
(b) VY includes YF ;
(c) VY is contained in any n-parallelepiped V such that V ⊇ YF .

We call VY a minimal n-parallelepiped of a bounded algebraic set YF . For VY , we use the same notation
as was adopted for V in Sec. 2.

The definition of a minimal n-parallelepiped is not constructive. Here, therefore, we outline an extra
procedure of finding a minimal n-parallelepiped, which is the simplest algorithm modulo the ring k̄ =

∏
i∈I

k(i).
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Let YF ⊂ Fn be any bounded algebraic set over F . Speaking of a bounded set being defined, we
also mean that some n-parallelepiped V ⊇ YF is defined together with YF , as well as a realization of the
coordinate algebra Γ(YF ) in F̄ , consistent with V (see Sec. 3), that is, Γ(YF ) = 〈F, x1, . . . , xn〉, where

xi = ti1v
i
1 + . . .+ timi

vi
mi

+ ci, ti1, . . . , t
i
mi
∈ k̄, i = 1, . . . , n.

We show how to “diminish” the generators x1, . . . , xn ∈ F̄ for a minimal n-parallelepiped to be able to
“accomodate” them. To do this, use will be made of the standard machinery for linear algebra.

By Lemma 3.3, the bounded algebra B(F̄ ) is isomorphic to an algebra F ⊗k k̄, and hence B(F̄ ) is a free
module over the ring k̄ with a basis consisting, for instance, of regular Hall words.

We take any element x ∈ B(F̄ ) and represent it as

x = t1v1 + . . .+ tmvm + c, t1, . . . , tm ∈ k̄, v1, . . . , vm, c ∈ F. (1)

We say that in correspondence with the representation of x is a finite-dimensional affine space V + c in F ,
where V = link{v1, . . . , vm}. Clearly, for x, representation (1) is not unique. In particular, we can reduce
it, by decreasing the number of summands, in the following two cases:

(1) if v1, . . . , vm, c are linearly dependent over k;
(2) if t1, . . . , tm are affine dependent over k.
Using the reasoning standard for linear algebra, we see that for any element x ∈ B(F̄ ), there are a

representation of form (1), which we refer to as irreducible, and its corresponding affine space, which we
conceive of as minimal, possessing the following properties:

(1) the elements v1, . . . , vm, c are linearly independent over k;
(2) the elements t1, . . . , tm are affine independent over k (moreover, an irreducible representation is

unique up to permutation of summands in it, so its corresponding minimal space is also unique);
(3) no matter which reducible representation

x = t′1v
′
1 + . . .+ t′nv

′
n + c′, t′1, . . . , t

′
n ∈ k̄, v′1, . . . , v

′
n, c

′ ∈ F, (2)

might be given, the number of summands in it is greater than is one in the irreducible representation, and
doing away (in any order) with the linear dependence between v′1, . . . , v

′
n, c

′ and with the affine dependence
between t′1, . . . , t

′
n, we are committed to be faced up to the unique irreducible representation desired;

(4) if V ′ + c′ is an affine space corresponding to an arbitrary representation (2) then V ′ + c′ contains
V + c as a minimal space.

Thus our algorithm is aimed at finding minimal spaces V1 + c1, . . . , Vn + cn given some realization of the
coordinate algebra Γ(YF ) in F̄ such as Γ(YF ) = 〈F, x1, . . . , xn〉 for generators x1, . . . , xn ∈ B(F̄ ). Clearly,
V = (V1 +c1)× . . .×(Vn +cn) will be a minimal n-parallelepiped for the bounded set YF . Since our minimal
n-parallelepiped is unique, its construction does not depend on the starting realization of the coordinate
algebra Γ(YF ).

Let YF ⊂ Fn be a bounded algebraic set over an algebra F . As noted, the non-uniqueness of YF → Yk•V
is associated with ambiguities in defining an n-parallelepiped V ⊇ YF . As V we now take a minimal n-
parallelepiped VY of YF and define a correspondence such as YF → Yk • VY , where Yk is an algebraic set
over a field k corresponding to YF treated as a subset of the n-parallelepiped VY .

The fact that YF ↔ Yk is realized inside the minimal n-parallelepiped VY imposes on Yk ⊆ kM the
following maximality condition.
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Definition. Let Yk ⊆ kM be an algebraic set over a field k. We say that Yk satisfies the maximality
condition relative to the partitionM = m1+. . .+mn if the radical Rad(Yk) ⊂ k[y1

1 , . . . , y
1
m1
, . . . , yn

1 , . . . , y
n
mn

]
lacks in non-trivial equations such as

β1
1y

1
1 + . . .+ β1

m1
y1

m1
+ γ1 = 0, β1

1 , . . . , β
1
m1
, γ1 ∈ k,

. . .

βn
1 y

n
1 + . . .+ βn

mn
yn

mn
+ γn = 0, βn

1 , . . . , β
n
mn
, γn ∈ k.

(3)

In other words, if Yk is written in the form of the Cartesian product Yk = Y 1 × . . . × Y n, where Y 1 ⊂
km1 , . . . , Y n ⊂ kmn , then no one of the sets Y i is contained in an affine space of dimension lesser than mi,
i = 1, . . . , n.

LEMMA 5.1. Let YF ⊂ Fn be a bounded algebraic set over F , VY be a minimal n-parallelepiped
for YF , and Yk ⊆ kM be an algebraic set over k corresponding to YF inside VY . Then Yk satisfies the
maximality condition relative to the partition M = m1 + . . .+mn.

The proof follows the line of argument used in describing the algorithm for finding a minimal n-
parallelepiped. Let, to the contrary,

β1y
1
1 + . . .+ βm1y

1
m1

+ γ1 ∈ Rad(Yk), β1 �= 0.

For any point (α1
1, . . . , α

1
m1
, . . . , αn

1 , . . . , α
n
mn

) ∈ Yk, we then have

α1
1 = −(β2 : β2) · α1

2 − . . .− (βm1 : β1) · α1
m1
− (γ1 : β1).

Consequently, for any point (b1, . . . , bn) ∈ YF , it is true that

b1 = α1
1v

1
1 + . . .+ α1

m1
v1

m1
+ c1 =

α1
2 · (v1

2 − (β2 : β1) · v1
1) + . . .+ α1

m1
· (v1

m1
− (βm1 : β1) · v1

1) + (c1 − (γ1 : β1) · v1
1),

which is a contradiction with the minimality of an n-parallelepiped VY . �

If we inverse the argument used in the proof of Lemma 5.1 we arrive at the following:

LEMMA 5.2. Let V be an n-parallelepiped, and let Yk ⊆ kM and YF ⊂ Fn be mutually corresponding
algebraic sets inside V. If Yk satisfies the maximality condition relative to the partition M = m1 + . . .+mn

then V is a minimal n-parallelepiped for YF .
Lemmas 5.1 and 5.2 imply that YF → Yk • VY is invertible and is one-to-one.
Denote by Aff (F ) the subcategory in BAS(F ) whose objects are all possible n-parallelepipeds, with

n ∈ N. Define the category AS(k) •Aff (F ), taking as its objects the set of all consistent pairs of the form
Yk • VY , where

(1) VY is an n-parallelepiped (with ranks m1, . . . ,mn and with bases of its generating affine spaces
defined as in Sec. 2);

(2) Yk (⊆ kM ) is an algebraic set over k satisfying the maximality condition relative toM = m1+. . .+mn.
Morphisms of the category AS(k) •Aff (F ) are naturally generated by those in AS(k) and in Aff (F ).
Lemmas 5.1 and 5.2 imply the following:

THEOREM 5.3. Objects of the category BAS(F ) are in one-to-one correspondence with objects in
AS(k) •Aff (F ).

COROLLARY. If the ground field k is finite then bounded algebraic sets over F are exactly all possible
finite pointsets.
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Despite the fact that the objects in BAS(F ) are in one-to-one correspondence with those in AS(k) •
Aff (F ), the categories themselves are not isomorphic. The reason is that AS(k) • Aff (F ), by definition,
enjoys more morphisms than BAS(F ). The categories BAS(F ) and AS(k) • Aff (F ) will be isomorphic if
we redefine morphisms in one of them, or in both.

6. ALGEBRAIC GEOMETRY OVER A FREE
LIE ALGEBRA IN DIMENSION 1

Here, we clarify which algebraic sets Y ⊆ F in dimension 1 are unbounded. By Theorem 1.3, the
coordinate algebra Γ(Y ) has the following realization in the Cartesian product F̄ =

∏
i∈I

F (i):

Γ(Y ) = 〈F, x〉, x ∈ F̄ .

If the generator x ∈ F̄ belongs to a bounded subalgebra B(F̄ ) then Γ(Y ) is a bounded coordinate algebra
and Y is a bounded algebraic set. Therefore we assume that x /∈ B(F̄ ).

LEMMA 6.1. If x /∈ B(F̄ ) then the coordinate algebra Γ(Y ) is F -isomorphic to a free Lie algebra
with generators a1, . . . , ar, x, where a1, . . . , ar are free generators for F .

Proof. We claim that Γ(Y ) ∼=F F [x]. Assume, to the contrary, that there exists a non-zero Lie
polynomial f(x) ∈ F [x] with roots in arbitrarily large degrees. We find an element x0 ∈ F , the root of
f(x), such that the degree of x0 is greater than is one of f(x) treated as an element of the free Lie algebra
F [x]. The equality f(x0) = 0 implies f(x) ∈ id〈x − x0〉, where id〈x − x0〉 is an ideal of F [x] generated by
(x− x0). By the choice of x0 ∈ F , the polynomial f(x) cannot belong to id〈x− x0〉 since the degree of any
non-zero element of id〈x− x0〉 is not less than is one of its generating element (x− x0) (see [8]). �

COROLLARY. For the case where x /∈ B(F̄ ), the whole algebra F is an algebraic set Y ⊆ F corre-
sponding to a coordinate algebra 〈F, x〉.

Thus the following theorem holds.

THEOREM 6.2. Any algebraic set Y in dimension 1 (Y ⊆ F ) over a free Lie algebra F is one of the
following:

(a) a bounded set, or
(b) the whole algebra F .
Recall that for the case where k is a finite field, bounded algebraic sets are all possible finite pointsets.

CONCLUSION

As noted in the Introduction, all the results of the present paper can be extended to the case where F
is a free anticommutative algebra over a field k. Below, we give a list of the properties of a free Lie algebra
which have been used in our account.

Property 1. Let v ∈ F be a non-zero element. Then a solution for s(x) = x ◦ v = 0 is exactly a
one-dimensional space spanned by the vector v.

This implies that n-parallelepipeds are algebraic sets over F .
Property 2. Let a1, . . . , ar be free generators for F . Then F has a linear basis consisting of words

composed of letters a1, . . . , ar. For every element a ∈ F , we define the degree n relative to a1, . . . , ar. For
every natural n, the set of basis elements whose degrees do not exceed n is finite. For a free Lie algebra,
such a basis can be exemplified by the Hall basis.
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Property 3. Let a, b ∈ F , a ◦ b �= 0. Then the degree of a product a ◦ b is greater than the degrees of
elements a and b. If a, b1, . . . , bn ∈ F are non-zero elements, and the degree of a is greater than the degrees
of bi, i = 1, . . . , n, then a ◦ b1 ◦ . . . ◦ bn �= 0.

This property is used in translating equations over a field k into equations over an algebra F .
Property 4. Let a ∈ F be a non-zero element, and let id〈a〉 be an ideal of F generated by a. Then the

degree of any non-zero element of id〈a〉 is not less than is one of a (see [8]).
Property 4 was appealed to in the proof of Lemma 6.1, using which we have obtained a description of

all algebraic sets over F in dimension 1 (n = 1).
In the present paper, we did not attempt to find all algebras satisfying Properties 1-4. Still it is worth

observing that a free anticommutative algebra satisfies these, and hence all of the results presented above
hold true for it, too.
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