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Abstract
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ated by a free non-abelian gro#p thenH is universally equivalent either to a unique direct product
F! of I copies ofF or to the groupF’ x Z, whereZ is an infinite cyclic.
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1. Introduction
1.1. Some notions from model theory

It has been shown in [9] that basic notions of algebraic geometry over groups have
interesting connections with logic and universal algebra. We recall here a few necessary
definitions and refer to [9] for detalils.

The standard language of group theory, which we denotk, lepnsists of a symbol for
multiplication -, a symbol for inversiorrt, and a symbol for the identity 1.

Let X = {x1,...,x,} be a finite set of variablesy ™1 = {x~1 | x € X}, and X*! =
X U XL A group wordin variablesX is a word S(X) in the alphabetx*!. Observe,
that every term in the language is logically equivalent (modulo the axioms of group
theory) to a group word itX. An atomic formulan the languagéd. is a formula of the type
S(X) = 1. Sometimes we refer to atomic formuladiras (coefficient-free) equations, and
vice versa. ABoolean combinationf atomic formulas in the languadeis a disjunction
of conjunctions of atomic formulas or their negations. It follows from general results on
disjunctive normal forms that every formuda(X) in L is logically equivalent to a formula
of the type

01210272... Onzn¥ (X, Z),

where Q; € {V,3}, Z ={z1,...,zn}, and¥ (X, Z) is a Boolean combination of atomic
formulas in variablest U Z. If in the formula® (X) the set of free variableX is empty
then® is called asentencén L. In the sequel we assume that all formulas arg {if not
said otherwise) and omit mentionirg

If @(X) is aformula ands is a group, then for an-tuple of elementg = (g1, ..., gn)
from G we write G = @ (g) if @(X) holds inG on elementsggs, ..., g,). By &(G) we
denote the truth set @b:

?(G)={geG"|GE®(®}.

If G is a group, then the set T&) of all sentences which are valid i is called the
elementary theorpf G. Two groupsG and H are elementarily equivalenf Th(G) =
Th(H). The theory TKG) is decidablef there is an algorithm which for every sentenge
determines whether or ngtis true inG.

A class of group«C is axiomaticif there exists a set of sentencEssuch thatC consists
precisely of all groups satisfying all formulas from. In this event we say tha¥ is a set
of axiomsfor K. For a class of group§ denote by TK) the elementary theory df, i.e.,
the set of all sentences of which are true in every group orf K = { H} then we write
Th(H) instead of Tl{{ H}) and use this approach in all similar circumstances.

The notion ofinterpretationprovides one of the most powerful tools in modern model
theory (see, for example, [5,10,11]). It can be defined for arbitrary algebraic structures, but
we restrict ourselves to groups only.

A group codeC is a set of formulas

C={U(X,P),E(X,Y, P),Mult(X,Y, Z, P), Inv(X., Y, P)}, 1)
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whereX, Y, Z, P are tuples of variables withX| = |Y| = |Z|. If P =@, thenC is called
anabsolute coder 0-code.

Let C be a group codel! be a group, an@ be an| P|-tuple of elements irH. We say
that C (with parameters3) interprets a groupC(H, B) in H if the following conditions
hold:

(1) the truth setU (H, B) in H of the formulal/ (X, B) (with parameter®) is non-empty;

(2) the truth set of the formul& (X, Y, B) (with parametersB) defines an equivalence
relation~g onU (H, B);

(3) the formulas MultX, Y, Z, B) and InV X, Y, B) define, correspondingly, a binary op-
eration £ = Z(X, Y)) and a unary operatiorY(= Y (X)) on the set/ (H, B) compat-
ible with the equivalence relation;

(4) the set of equivalence class&sH, B)/ ~p forms a group with respect to the op-
erations defined by MUulX, Y, Z, B) and In X, Y, B). We denote this group by
C(H, B).

We say that a grougy is interpretable (or definablé in a groupH if there exists a group
codeC and a set of parameteBC H such thatG ~ C(H, B). If C is 0-code therG is
absolutelyor G-interpretablein H. The following two types of interpretations are crucial.
Let G be a definable subgroup of a grofp i.e., there exists a formuld (x, P) and a set
of parameters8 C H such that
G={geH|HEU(@g B}
ThenG is interpretable inrH by the code
Cg = {U(x, P), x=y,xy=z,y =x71}
with parameters. If in addition G is a normal subgroup dff , then the code
Cujc = {x =x, Elv(x =yvAU(v, P)), =Xy, y :x_l}
interprets the factor-grouff /G in H with parameters.
Every group code (1) determinedranslation T which is a map from the set of all
formulasF., in the languagd. into itself. We definel by induction as follows:
(1) Te(x=y)=EX.,Y, P);
(2) Tec(xy =2) =Mult(X, Y, Z, P) andTc(x 1= y) = Inv(X, Y, P);
3) if ¢, ¥ € Fr ando € {A, Vv, —1}, then
Tc(poy)=Tc(p)oTe(y) and Tc(—¢) =—Tc(9);
(4) if ¢ € Fr, then

Te(3Ixp(x)) =3IX (U (X, P) A Tc(9)),
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Te(Vx¢(x)) =VX(U(X, P) = Tc(9)).

Observe, that the formulB: (¢) can be constructed effectively from

Now we are ready to formulate the fundamental (but easy to prove) property of inter-
pretations.

Let a group code” interprets (with parameterB) a groupG in a groupH, and let
A:G — C(H, B) be the corresponding isomorphism. Then for every forngul&) and
every| X|-tuple A of elements fronG the following equivalence holds:

GE¢(A) < HETc@) (A B).

In particular, a sentengg holds inG if and only if T¢ (¢)(B) holds inH .

If C is a 0-code, thed'(H) inherits some model theoretic propertiegbfFor example,
if the theory THH) is decidable, ok-stable, or has finite Morley rank, then so is the theory
Th(C(H)) (it follows directly from the fundamental property of translations). Moreover, if
H =K thenC(H)=C(K).

Sometimes, we cannot O-interpret a graspn a groupH. In this case, however, one
can try to O-interpret the elementary theory(@h in H. To explain, we need the following
definition. LetG and H be groups. We say that the elementary theoryGhhof G is
interpretable in the groufl if there exists a group codg of the type (1) and a formula
¥ (P) such that ThG) = Th(C(H, B)) for any set of parameterB C H that satisfies
the formula¥ (P) in H. It is not hard to see that the group still satisfies the same
model-theoretic properties &t (in the sense mentioned above). We refer to [6] and [7] for
details.

One of the main results of this paper is that elementary theories of coordinate groups
of irreducible components of an algebraic ebver a groupG are interpretable in the
coordinate group ot for a wide class of group&. We will say more about it in the
sequel.

1.2. Direct products of domains and orthogonal systems

In Section 2 we develop an approach to direct products of domains via orthogonal sys-
tems (of idempotents) similar to the classical one in the ring theory. To this end, following
[1] we introduce a special binary operation, the so-callgatoduct, on a group.

Let G be a group. Fok, y € G put

xoy=[gps(x).9pc ]

We call a non-trivial element € G azero-divisorin G if there exists a non-trivial element

y € G such thatc ¢ y = 1. In this event we also say thatis orthogonalto x, and write

x L y. AgroupG is termed adomainif it has no zero-divisors. The class of domains is
fairly extensive, for example, it contains all non-abelian CSA groups and, in particular,
all torsion-free hyperbolic groups. We refer to [1] for more details on zero-divisors and
domains.
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For a subsef C G put
St={geG|VseS(gos=D}.

It is easy to see that’ is a normal subgroup af, it is called theorthogonal complement
of S. In Section 2 we discuss various propertiesséf

A systemE = {eq, ..., e,} C G is termedorthogonalif ¢; # 1 ande; ¢ ¢; = 1 for alll
1<i # j <n.InProposition 1 we prove the following basic result:

LetG = G1 x --- x G, be afinite direct product of domair®y, ..., G,. ThenG has
a unique(up to a permutation of factoydinite direct decomposition into indecomposable
groups. Moreover, it can be written as

G=(eq) x-x (er) "

where{es, ..., e,} is an arbitrary orthogonal system afelements irG.

The unique factor€s, ..., G, of the groupG above are calledomponentsf G. It
turns out that the elementary theory@fis completely determined by elementary theories
of its components, which allows one to reduce model-theoretic problems ébtwthe
corresponding problems for the componentsGofThis result is based on the following
theorem.

Theorem A. Let G be a finite direct product of domains. Then for each compoggruf
G its elementary theor¥h(G;) is interpretable in the grougs.

Corollary A. Let G be a finite direct product of domain@y, ..., G,. Then the following
hold:

(1) If G = H thenH is also a finite direct product of domains and if
G=G1x-x Gy, H=H; x---x Hy,

are their component decompositions, titea m and G; = H; (after suitable ordering
of factorg;

(2) Th(G) is decidable if and only iTh(G;) is decidable for every=1, ..., k;

(3) Th(G) is A-stable(has finite Morley rankif and only if Th(G;) is A-stable(has finite
Morley ranK for everyi =1, ..., k.

1.3. Subdirect products of domains

In Section 3 we generalize results on direct products of domains to subdirect products
of domains.
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LetG =G x --- x G be adirect product of grougs; . A subgroupH of G is called a
subdirect producbdf groupsaG; if =;(H) = G; for everyi =1, ...,n, wheren; : G — G;
is the canonical projection. An embedding

AH—>Gyx--x Gy 2

is called asubdirect decompositioof H if A(H) is a subdirect product of the groups.
Sometimes, we identifyd with A(H) via A. The subdirect decomposition (2) is termed
minimalif H N G; # {1} for everyi =1, ...,n (hereG; is viewed as a subgroup @f
under the canonical embedding). It is easy to see that given a subdirect decomposition of
H one can obtain a minimal one (by deleting non-essential factors).

In Proposition 3 we prove that a minimal subdirect decomposition of a gfbupto
products of domaing; is unique. We refer to the domaing as tocomponentsf H.

Theorem B. Let H be a minimal subdirect product of domains. Then the elementary theory
of each component df is interpretable in the groug.

This result allows one to study model theorymfvia the components aff .
1.4. Algebraic geometry over groups

Section 4 contains some applications of the developed techniques to algebraic geometry
over groups. To explain this we recall some basic definitions from [1].

Let X = {x1,...,x,} be a finite set. For a groug denote byG[X] the free product
G x F(X) of G and a free groug (X) with basisX. An elementf € G[X] may be viewed
as a word in the variable§*! with coefficients inG. Givenp = (g1, ..., gn) € G", we
can substitut@;ijEl for xl.il in f to obtain an elemenf(p) € G. If f(p) =1, we think of
p as a solution of the equatiofi= 1. More generally, a subsétof G[X] gives rise to a

system of equationS(X) = 1 overG. The set
Ve($)={peG"| f(p)=1forall f €S}
is termed thalgebraic sebver G defined bysS. Put
RadS)={feG[X]| f(p)=1forall peY}.

Clearly, RadS) is a normal subgroup @[ X1, itis called theadical of S. The factor group
I'(Y) =G[X]/RadJ) is termed theoordinate groupf the algebraic set = V;(S).

One can define a so-call@&driski topologyon G” by taking algebraic sets as a sub-basis
for closed sets. A grou@ is said to beequationally Noetheriaif, for everyn > 0 and any
subsetS of G[x1, ... x,], there exists a finite subs§j of S such thatV; (S) = Vi (Sp). Ob-
serve, that every linear group is equationally Noetherian, in particular, every free group is
equationally Noetherian (see [1,2,4]). It turns out that a grGup equationally Noetherian
if and only if the Zariski topology oiG” is Noetherian for every positive. We recall that
a topological space isloetherianif it satisfies the descending chain condition on closed



84 A. Kvaschuk et al. / Journal of Algebra 288 (2005) 78-98

subsets. Noetherian topological spaces have a very nice property: every closed set is a
finite union of irreducible ones (a non-empty subgeis irreducible if it is not a union

Y = Y1 U Y> of proper subsets, each of which is relatively close# JnThe following two

results path the way for applications of the orthogonal systems into algebraic geometry
over groups.

Theorem 1[1]. Every algebraic seY over an equationally Noetherian groupis a finite
union of irreducible algebraic sets, each of which is uniquely determined. l§yhey are
called the irreducible components 6f)

Theorem 2 [1]. Let G be an equationally Noetherian group antbe an algebraic set
overG. If Y1, ..., Y, are the irreducible components Bfthen the coordinate group'(Y)
is a minimal subdirect product of the coordinate group&rs), ..., I'(Yy).

It might happen, in general, that the coordinate grofig¥;) are not domains. So, to

be able to apply our technique we need to put some restrictions on the Greup (Y).

Recall [8] that a groug is called CSA if all maximal abelian subgroups Gfare mal-
normal (a subgroup¥ < G is malnormal if for every non-triviat: € M andx e G — M

the conjugate—1mx is notin M). We refer to [8] and [1] for a detailed discussion of CSA
groups. Here we just observe that the class of CSA groups is quite wide (it contains, for
example, all torsion-free hyperbolic groups) and that every non-abelian CSA group is a
domain. Now, combining Theorems 2 and B, we obtain the following remarkable result.

Theorem C. Let G be an equationally Noetherian, non-abelian CSA-grdujbe an alge-
braic set overG, andI" (Y) be the coordinate group df. Then for each componekit the
elementary theorfh(I"(Y;)) is interpretable in the groug™(Y).

As we have seen above, this implies various model-theoretic results relating coordinate
groups and their irreducible components.

1.5. Universal classes and axioms

In Section 5 we give another application of orthogonal systems to universal algebra. We
begin with a few necessary definitions and refer to [9] for details.

A universal sentenc the languagd. is a formula of the typ& X @ (X, Y), whereX
andY are tuples of variables, ar®l(X, Y) is a Boolean combination of atomic formulas
in L.

A class of groupsC is calleduniversalif it can be axiomatized by a set of universal
sentences. For a class of groupslenote by Th(K) the universal theory of, i.e., the set
of all universal sentences @f which are true in every group frois. Two groupsH and
K areuniversally equivalen{in writing H =y K) if Thy(H) = Thy(K). The universal
closureof K is the axiomatic class u@l) with the set of axioms TW(K).
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Some universal classes are of particular interest. For examphgjety is a universal
class axiomatized by a set igfentities i.e., universal formulas of the type

VX(/m\rl-(X)=1>, 3)

i=1

wherer; (X) is a group word inX. A class of group< is calleda quasivarietyif it can be
axiomatized by a set of quasi identities, which are universal formulas of the type

VX(/\ri(X)=1—>s(X):1), (4)

i=1

wherer; (X) ands(X) are group words irX .

For a class of group& denote byQ () the set of all quasi identities in the langualge
which hold in all groups fronkC. Clearly, O (K) is a set of axioms of thminimalquasiva-
riety qvarC) containing/C. Observe, that every variety is a quasivariety.

A classK is calleda prevarietyif it is closed under taking subgroups and cartesian
products. It is not hard to see that the minimal prevariety @vacontaining/C consists of
subgroups of cartesian products of groups friomit follows that for any clas&

pvar(C) € gqvar k) < var(K).
The following result links algebraic geometry over groups to universal algebra.
Theorem 3[9]. Let H be an equationally Noetherian group. Then the following hold

(1) afinitely generated grouf is the coordinate group of an algebraic set ovérif and
only if it belongs toqvan H);

(2) afinitely generated grouf@, containingH as a subgroup, is the coordinate group of
an irreducible algebraic set ovel if and only ifucl(K) = ucl(H), i.e.,K =y H. In
this eventK is also equationally Noetherian.

The main result of Section 5 gives a description of the universal closuf& ucif any
finitely generated groupl from qvai F), whereF is a free non-abelian group. It turns out
that each such class @#l) contains a unique representative. Namely, for a non-negative
integer! define

Gio=Fx---xF, Gi1=Fx---xFxZ.
_\‘/_J - )
1 l

Then the following result holds.

Theorem D. Let F be a free non-abelian group andd be a finitely generated group from
gvar(F). Thenucl(H) = ucl(G, ;) for a suitable/ andi. Moreoverucl(G; ;) = ucl(Gy, ;)
if and only ifl = k andi = j.
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2. Orthogonal systemsand direct products
Let G be a group. In Section 1.2 for any elements € G we introduced the-product
x ¢y and said thak is orthogonal toy (x L y) if x ¢ y = 1. In this section we use these
notions to study direct decompositions of groups.
Recall that theorthogonal complemer{pr thec-annihilator) of a subsetS C G is de-
fined by
St={yeG|forallxeSx Ly} (5)
Sometimes, following ring theory, we dendté by Ann(S). Notice that for anys ¢ G
St =gps(S)*.
Lemma 1. For any S C G the orthogonal complemesst- is a normal subgroup of.
Proof. Clearly
st=({c(s*)| g€ G. ses}.

hence it is normal, as requiredO

Note thatG is a domain if and only if for any non-trivial € G, x* = {1}.
Observe also, that for any

xlx < xox=1 <= gps(x) isabelian.

More generally, an elemente G is <o-nilpotentof degreek if k is the minimal positive
integer such that

(...(x<>x)<>...)<>x=1,

k

i.e., if gp; (x) is a normal nilpotent subgroup @f of classk (see [1] for details). In this
eventy L y for any central non-triviay in gp; (x). This argument suggests the following
definition.

Definition 1. A group G is calledo-semiprime (or semiprime), if the following equivalent
conditions hold:

(1) x ¢ x # 1 for any non-trivialx € G;
(2) there are no nilpotent elementsGh
(3) there are no normal nilpotent subgroupin
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It is easy to see that every domain is semiprime, as well as a direct product of domains.
But a subgroup of a semiprime group need not to be semiprime.

The following result justifies the name 6f- by showing thatS+ is a unique maximal
normal direct complement of gf) in G.

Lemma2. LetG be a semiprime group. Then for afyc G the following conditions hold

(1) gn(s, $H)=gp(s) x $*;
(2) gps(S. S1) =gps(S) x $*;
(3) if gp(S, A) = gp(S) x A for some normal subgroup < G, thenA < S+.

Proof. Let S € G. By Lemma 1 the complemerst- is a normal subgroup ofi. From
the definition of theo-product follows that[gp;(S), S*1 = 1. SinceG is semiprime
there are no non-trivial elementse G with x ¢ x = 1, hence gp(S) N S+ =1. This
shows (1) and (2). To see (3) it suffices to notice th&fijfA] = 1 for a subseft C G then
AcCSt. O

Recall that a systemt = {ey, ..., e,} C G is orthogonalif ¢; # 1 ande; ¢ ¢; =1 for
all1<i#j<n.

An orthogonal systent C G is calledmaximal if E+ =1, it is calledreducedif every
element ofFE is reduced, i.e., it is not a product of two non-trivial orthogonal elements.
By the Zorn's lemma every (reduced) orthogonal system of a g@up contained in a
maximal (reduced) orthogonal system.

Now, following classical ring theory, we develop an approach to direct decompositions
of semiprime groups via orthogonal systems.

Let

G=G1x---xGy (6)

be a direct product of groups. By; : G — G; we denote the canonical projection
(g1,...,8n) — gi- Sometimes we identify the grou@; with its image inG under the
canonical embedding — (1,..., g, ..., 1). Adirect decompositiolt = G1 x --- x G,
is called reducedf eachG; is a non-trivial directly indecomposable group. We say that
has a unique (up to a permutation of factors) direct decomposition (6) if for any other re-
duced direct decompositiai = Hy x --- x H,, one hasn = n and there is a permutation
o € Sym(n) such thaiG; = H, ;) foreveryi =1,...,n.

For an elemeng € G by supfig) we denote the support gf i.e., the sefi | ; (g) # 1}.

Proposition 1. LetG = G1 x --- x G,, be a finite direct product of domaing,, ..., G,.
Then the following hold

(1) Elements, h € G are orthogonal if and only iSupp(g) N sup@h) = @.
(2) A systemE C G is maximal reduced orthogonal if and only if it is orthogonal and
|E| = n. Moreover, in this evenE = {eq, ..., e,} Wwherel #£¢; € G;.
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(3) Foranyg; € G;

. . 1
g =0pG;lj#D), (&) =Gi.
(4) G has a uniqudup to a permutation of factoyseduced direct decomposition, more-
over, it can be written as

G= (ef)L X o X (enL)l,

wheref{es, ..., e,} is an arbitrary orthogonal system afelements irG.

Proof. (1) is obvious. It follows from (1) that any systeri = {e1,...,e,} with
1+#£e; € G; is orthogonal ¢ ¢ ¢; # 1 sinceG, is a domain). Now ifg € E+ then for
everyi supfg) U suppe;) = @, hence supfg) = 0, i.e., ¢ = 1. This shows thaf is
maximal. To see that each is reduced (not a product of two non-trivial orthogonal el-
ements) it suffices to notice that.if L y then supgxy) = suppx) U supfy). Observe
also, that the argument above shows thdt i an orthogonal system afelements then
{supfe) | e € E} is a system of: disjoint subsets of1, ..., n}, hence|supge)| = 1 for
everye € E, as required.

Conversely, ifE is a maximal reduced orthogonal systemdnthen{supge) | e € E}
is a system of disjoint subsets ¢f, ..., n}. SinceE is reduced thensupge)| = 1 for
anye € E. Indeed, lete € E and supge) = I U J for some non-empty and disjoitdt J.
Thene = e(1)é(J) for some non-triviak (1), e(J) with supfe(1)) = I, supge(J)) = J—
contradicting to the condition thatis reduced. This shows thigguppe)| = 1 and in view
of maximality of E the condition (2) holds.

To see (3) fix an elementst g; € G; and notice thaG ; C giL foreveryj #£i. Sincegl.L
is a subgroup o6 it follows that guG; | j #i) C g-. Now, if gp(G; | j #1i) # g;- then
there exists a non-trivial elemerite G; N gl-J‘. It follows that f ¢ g; = 1—contradiction
with the condition thatG; is a domain. This proves the first equality in (3), a similar
argument proves the second one.

(4) follows from (2) and (3). Indeed, Idt be a maximal reduced orthogonal system in
G (it exists by Zorn’s lemma). It follows from (2) that any reduced direct decomposition of
G has preciselyE| factors. Moreover, eachfrom E belongs to one and only one factor
from a given reduced decomposition@fand by (3) that factor is equal te*)*.

This proves the proposition.O0

Notation. Let Dy be the class of groups which are direct products wén-trivial domains,
and

Dw=UDk.
k

By Proposition 1 for a groufis € D,, the reduced direct decompositi@gh= G1 x
.-+ X Gy is unigue (up to an ordering of factors). We will refer to these fact@ras to
componentsf G. By compG) we denote the number of componentaf

Now we are ready to discuss model theoretic properties of direct products of domains.



A. Kvaschuk et al. / Journal of Algebra 288 (2005) 78-98 89

Lemma 3. For every positive integet there exists a universal formulart, (x1, ..., x;)
such that for a grougs and ak-tuple E € G* the formulaOrt, (E) holds inG if and only
if E is an orthogonal system i@.

Proof. Set
Orto(x1, x2) =Vy ([xly, xz] =1Ax1#£1AXx2# 1).

For any groupG if the formula Orp(x1, x2) holds ong, 4 € G theng andh are non-trivial
andg 1 &. Now fork > 3 put

Orte(x1,...,x) = /\ Ortz(xi,xj).
1<i<j<k

Obviously, Ort holds on elementgy, ..., gr € G ifand only if {g1, ..., g«} is an orthog-
onal system irG. This proves the lemma.O

The following result shows that for each grodpe D; the set of elementg with
|supfg)| = 1 is definable inG, as well as each componentGf

Lemma 4. Let k be a positive integer. Then there exists a form8lamp,(x, p) and a
formula P (p) such that for each grou@ € Dy the following conditions hotd

(1) foranyg e G
GEP(g <+ |[supHg)|=1

(2) foranyg e G with | suppg)| = 1 the truth seCompG, g) of the formulaComp(x, g)
coincides with the compone6t, of G containingg.

Proof. Let
Pr(p) =3x2...3x; Orte (p, ..., xx).
Then, in view of Lemma 3P (g) holds ong € G if and only if g is a part of an orthogonal
system ofk elements. Hence, by Proposition dupfg)| = 1, as required.
To show (2) put
Comp,(x,p)=Vy (Gop=l-xoy=1),
wherey ¢ p = 1is viewed as the formulz[y, z~1pz] = 1, and similarly forx o y. Clearly,
the truth set ComgG, g) of the formula Comp(x, g) coincides with(g-)+, which is
equal, by Proposition 1, to the component@fcontainingg. This proves (2) and the

lemma. O

Now we are ready for the proof of Theorem A from the introduction.
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Theorem A. Let G be a finite direct product of domains. Then the elementary theory of
each component af is interpretable in the grouis.

Proof. LetG € Dy andG = G1 x - - - x G be its component decomposition. By Lemma 4
there exist formulasPy(p) and Comp(x, p) such that for any € G for which Pi(g)
holds in G the formula Comp(x, g) with the parameteg defines a component a¥,
containingg. In particular, every component &f occurs as the truth set of Copp, g)

for someg. By Lemma 1 for an arbitrary € G the formula Compx, g) defines a subgroup
(perhaps, trivial) ofG. This shows that the formula Co, p) gives rise to a group code
(see Section 1.1)

C ={Comp,(x, p), E(x,y, p), Mult(x, y,z, p), InV(x, y, p)}

in which E(x, y, p) is the standard equality i@ and the formulas Mult, Inv are the multi-
plication and the inversion i@. To show that for every compone6; its elementary the-
ory Th(G;) is interpretable irG it suffices to construct a formulg; (p) such that for every
g € G if Pxi(g) holdsinG then the cod& with the parameteg interprets inG a compo-
nentG; with the same elementary theory as the giggni.e., THC(G, g)) = Th(G;). To
this end, fix a componeri; of G and consider the set of indices

Ji={j|1<j <k, ThG)) #Th(G))}.

Then for everyj € J; there exists a sentengg such thatpy;; € Th(G;), butg;; ¢ Th(G ).
Put

vi= )\ ¢ij-

JeJi

Clearly, ¥; holds in a componeng,, if and only if Th(G,,) = Th(G;). By the fundamen-
tal property of interpretations (Section 1.1) for evensatisfying Pi(g) the translation
Tc (¥i)(g) holds inG if and only if ¥; holds inC (G, g). This implies that the formula

Pri(p) = Pe(p) A Tc($i)(p)
holds on an element e G if and only if the codeC with the parameteg interprets inG a
component with the same elementary theory a§ ofTherefore, the elementary theory of
each component af is interpretable irG. This proves the theorem.o
Corollary 1. LetG € Dy and
G=G1x---xGyg

be its component decomposition. Then the following:hold

(1) Th(G) is decidable if and only iTh(G;) is decidable for every=1, ..., k;
(2) Th(G) is A-stable if and only ifTh(G;) is A-stable for every =1, ..., k.
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Proof. Let Th(G) be decidable. By Theorem A, the elementary theoryGih is inter-
pretable inG for each component;; by the group cod€ and the formulaP;; (see the
argument in the proof of the theorem). Then from the fundamental property of interpreta-
tions we see that for any sentenge

GiF¢ = GETc(@).

Since the translatiofic is an effective map the elementary theory@h) is also decidable.
Conversely, if every component; has a decidable elementary theory then the elementary
theory of their finite direct produat = G1 x --- x Gy is also decidable. This is due to

S. Feferman and R. Vaught [3]. This proves (1). The proof of the statement (2) is similar
and we omitit. O

Our next result shows that the number of components of a group gnis also a
logical invariant of the group.

Proposition 2. For every positive integek the classDy is finitely axiomatizable.

Proof. We use notations from Theorem A. FHoe 1 put
A1 =VxVy3z (x #IAny#1— [x, yZ] # 1)_

Clearly, A1 axiomatizes the class of all domaifg.
Letk > 2. Denote byA, a first-order sentence in group theory language which says that
there are elements, ..., ¢; € G such that the following conditions hold:

(&) The systemE = {eq, ..., e} is an orthogonal system i (one needs the formula
Orty(x1, ..., xx) from Lemma 3 to write down this condition).

(b) For everye; € E the set(el#)L is a normal subgroup af (can be easily done using
the formula Comp(x, p) from Lemma 4). Denote this subgroup 8y.

(¢) G =G1 x --- x Gi. To write down this condition by a formula it suffices to notice
that since the subgrougs; are normal inG the following equalities hold for each
i=1,...,k

gGjlj#1)=G1...Gi—1Giy1...Gy.
Indeed, now one can easily write down that
GingpGjlj#i)=1 and G=Gi...Gy.
(d) G;isadomainforevery=1,...,k. This is equivalent to the condition thdy holds
in eachG;. Observe, that the translatidig (A1) (g) holds inG if and only if A1 holds
in the interpretatiorC (G, g). Hence, it suffices to write down the conjunction of the

formulasT¢ (A1) (e;) for everye; € E.

Clearly, a groups belongs toDy, if and only if G satisfies the axiomd;,. O
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Now we can describe arbitrary groups which are elementary equivalent to a given group
from Dy.

Corollary 2. Let G, H be groups and5 € D;. ThenG = H if and only if H € Dy and
G; = H;, whereG;, H; are components af and H in a suitable enumeration.

Proof. The result follows from Theorem A, Proposition 2, and the fundamental property
of interpretations. 0O

Notice that Corollary A from the introduction summarizes the results from Corollaries 1
and 2.

Remark 1. One can generalize some of the results above to the case@be#l x C,
whereH € D, andC is an abelian group.

Indeed, in this cas€ is the center ofG, hence it is definable iz, as well as the
quotient groupG/C ~ H. We leave details to the reader.

3. Subdirect products

In this section we generalize results from Section 2 to subdirect products of domains.
Throughout this section we continue to use notations from the previous sections.

LetG = G1 x --- x G be a direct product of groups;. Recall, that a subgroufd of
G is called asubdirect producof groupsG; if =;(H) = G; foreveryi =1, ...,n.

An embedding

¢:H— G1x---xGyg @)

is called asubdirect decompositioof H if ¢ (H) is a subdirect product of the groups.
Sometimes, we identiffd with ¢ (H) along¢, andG; with its canonical image itG =
G1 x -+ x Gg. The subdirect decomposition (7) termachimalif H N G; # {1} for every
i=1,...,n(hereG; andH are viewed as subgroups 6.

The following simple lemma shows that given a subdirect decompositiéh a@fie can
obtain a minimal one by deleting non-essential factors.

Lemmab. Let¢g : H — G x --- x Gy be a subdirect decomposition of a grofip Then
there is a subsef C {1,...,k} and an embedding* : H < [[;., G, such thatp* is a
minimal subdirect decomposition éf.

Proof. LetI be a maximal subset ¢1, ..., k} such that

HﬂHG,-:{l}.

iel
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Then the following composition of homomorphisms
o k
H TG —>]_[G,»/]_[G,-:]_[Gj
i=1 i=1 iel j¢l

gives rise to the required embedding.
Let H be a subgroup of;. For elements, y € H we have two different types cf-
products, with respect to the grouflsandG:

xogy=[9py (). 0Py (M].  xocy=[9Ps ), 9P M].

We use subscripts to notify in which group the corresponding object takes place and use
this approach in all other similar circumstances (for exampleg y,orx Lg y). O

Lemma6. Let H < G1 x --- x Gy be a subdirect product of groufs, ..., G¢. Then for
elements:, y € H the following equivalence holds

xopy=1 & xocy=1L

Proof. Putl ={1,...,k}. SinceH is a subdirect product of groufs, ..., G, for any
h € H andi € I one has

7 (9py () = gpg, (i (h)).

It follows that for anyx, y € H,

xopy=1 < [gpy),gpy(»)]=1
— Viel mi([gpyx).gpz(M])=1
= Viel [m(gpy@).mi(gpp(»)]=1
&= Viel [gpg(mi(x).906 ()] =1
< Viel mx)og m(y)=1
— xo¢y=1

This proves the lemma.O

Proposition 3. LetG = G1 x - - - X G be a direct product of non-trivial domains aitl —
G1 x --- x G be a minimal subdirect decomposition of a grodp Then the following
hold:

(1) forx,ye H,x Ly y < supfx) Nsupy) =0;
(2) let E c H be an orthogonal system iH. Then|E| < k and |E| = k if and only if
E ={e1,...,ex} Wherel+#£e; € HNGy;
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(3) foranyh; € HN G,
hH=Hnkerm,  H/KM~G;, (k") =HNG;;

1

(4) H has a uniqudup to a permutation of factoysninimal subdirect decomposition into
a product of domains. Moreover, it can be written as

Hes H/hy" x - x H/ I ",
where{hs, ..., hi} is an arbitrary orthogonal system afelements inH .
Proof. It follows from Proposition 1 and Lemma 6.0

Notation. Denote byS Dy the class of groups which are minimal subdirect products of
domains, and pu§ D, = |J, SDx.

By Proposition 3 a group/ € SD,, has a unique (up to a permutation of factors) mini-
mal subdirect decompositiaii < G1 x - - - x G into a product of domains. We will refer
to these factorg;; as tocomponentsf H.

Lemma 7. A group G € SD,, has exactlyk components if and only i satisfies the
sentencé Xy Orty (X) A =(FXg+1Ortgr1(Xr41)).

Proof. Follows from Lemma 3 and Proposition 30

Theorem B. Let H be a minimal subdirect product of domains. Then the elementary theory
of each component df is interpretable in the grou.

Proof. Note that for any:; € H N G; the normal subgroup
h x € H | Vo([x, kY] = 1)}
is definable inH. Hence the factor-grouH/hl.l” is interpretable ind (see Section 1.1).
The rest of the proof is similar to that one in Theorem A.
From the properties of interpretations we deduce similar to the case of direct decompo-
sitions (see Corollary 1) the following resultso
Corollary 3. Let H € SD;. and
H — Gl X o0 X Gk

be its minimal component decomposition. Then the following: hold

(1) if Th(H) is decidable theiTh(G;) is decidable for every=1, ..., k;
(2) if Th(H) is A-stable theriTh(G;) is A-stable for every =1, ..., k.
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Theorem 4.

(1) For every positive integet classsS Dy is finitely axiomatizable.
(2) Let H, K be groups andd € SD;. If K = H thenK € SD; and H; = K;, where
H;, K; are components dff and K in a suitable enumeration.

Proof. (1) There exists a first order senterggin the group theory language which holds
in a groupH if and only if there are elements,, ..., hy € H such that the following
conditions hold:

(@) The systent = {h1, ..., hi} is a maximal orthogonal system i (one can use the
formula Orf, to write down this condition).

(b) Foreveryh; € E the sel‘hil is a normal subgroup aff (obvious formula).

(c) H/h;* is a domain for every; € E (by Theorem B the groupl /h;* is interpretable
in H. Since domains are axiomatic one can use the fundamental property of the inter-
pretations to write down this condition).

(d) h1 N---N kit =1 (obvious formula). Clearly iff |= By, then

H <> H/hi x---x H/hi,
henceH € SDy.

(2) The result follows from statement (1), Theorem B, the fundamental property of in-
terpretations, and the fact that the corresponding componeftsaoid K are interpretable
in H andK by the same codes.O

4. Irreducible components of algebraic sets

In this section we apply the technique of orthogonal systems to coordinate groups of
algebraic sets over equationally Noetherian non-abelian CSA groups.

Theorem 5. Let G be an equationally Noetherian non-abelian CSA-group, &nloe an
algebraic set ovets. Then the following conditions hald

(1) the number of irreducible componentslois equal tok if and only if I"(Y) satisfies
the formula3X Ort, (X) and does not satisfy the formuX Orty1(X);

(2) the coordinate groug”(Y;) of each irreducible componeit of Y is interpretable in
the groupI”(Y);

(3) the elementary theorfh(I"(Y;)) of each irreducible componery; of Y is inter-
pretable in the groug™(Y).

Proof. LetY =Y1U---U Y, be a decomposition df as a union of irreducible compo-
nents. By Theorem 2 (see Section 1.4) the coordinate gfauf) is a minimal subdirect
product of the coordinate groupgs(Y1),..., I'(Yy). Every groupI”(Y;) is universally
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equivalent toG [1], therefore it is a non-abelia@SAgroup, hence a domain. Now (1)—(3)
follow from Theorem B, Lemma 7, and Proposition 3. This proves the theorem.

Observe, that Theorem C from the introduction is just a part of Theorem 5.

Corollary 4. Let G be an equationally Noetherian non-abelian CSA group &nide an
algebraic set ovet;. Then the following conditions hald

() if Th(I"(Y)) is decidable, theh(I"(Y;)) is decidable for every irreducible compo-
nentY; of Y;

(2) if Th(I"(Y)) is A-stable, thenTh(I"(Y;)) is A-stable for every irreducible component
Y; of Y.

5. Universal subclasses of qvar (F)

Recall that a group isommutative transitivé it satisfies the following axiom:
CT=Vx,y,z (x 1INy, x]=1A[z,x]=1— [y, z] = l).

Let X,, = {x11, x12, . .., Xu1, X»2}. Consider the following open formulas:

n n 2
@, (X)) = N\ (i, xi2d 1)\ ( /\ ik, xj1] =1>,

i=1 i#j=1 \k,I=1

n 2
W (X, 2) = Pu(Xn) /\( /\[z,xi] = 1>.

i=1\/=1

Lemma8.LetG = G x - - - x G be a direct product of non-trivial commutative—transitive
groups. Then the following holds

(1) G satisfies the existential formulaX,, @, (X,) if and only if at least: of the groups
G1, ..., Gy are non-abelian

(2) G satisfies the existential formulgX, 3z¥, (X, z) if and only if at leastn of the
groupsGa, ..., G; are non-abelian, and at least one of them is abelian.

Proof. We start with the following.

Claim 1. Let G &= ®2(u1,u2,v1,v2) for some elementsiq, us, v1,v2 € G. Then
supp([u1, u2]) N (suppvy) U suppvz)) = 9.
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Indeed, sincelu1, up] # 1 then supfluy, uz]) # @. Let i € supp[u1,uz2]). If i €
suppv1) then the following holds in the grou@;:

[7i (u1), i (u2)] # 1, [7i (1), i (v1) ] = 1, [7i (u2), mi (v)] =1,
mi(vy) # L.

This contradicts to the condition th&; is commutative—transitive. Henée# suppv1).
Similarly, i ¢ supfv2). The claim follows.

Notice now, that if, say, the grougs, ..., G, are non-abelian then the set of elements
U, ={u11,u12, ..., uy1, uy2} such thate;1, u;> € G; andu;1, u;2] # 1, satisfiesp, (X,)
inG.

Conversely, suppose a set of elemebifsfrom G satisfies®, (X,) in G. Take any
im € SUPA[Um1, um2]). By the claim above,, ¢ suppu ;) foreveryj #mandl =1,2.In
particular,i,, ¢ supp(u;1,u;2]). It implies that the group&;,, ..., G;, are non-abelian,
as required. This proves (1). The statement (2) easily follows from ().

Let F be a non-abelian free group. For a non-negative integat

G o=Fx---xF, G 1=ZFx---xFxZ.
! !
Obviously, Lemma 8 implies the following result.
Corollary 5.

Gn,i =v Gm,j < m=n andi:j_

Theorem 6. Let H be a finitely generated group frogvar F). Then the following holds

(1) if Z(H) =1, thenH =y G, o for some positive integér
(2) if Z(H) # 1, thenH =y G, 1 for some positive integér

Proof. By Theorem 3, the grou@ is a coordinate group'(Y) of an algebraic set de-
fined by a coefficient-free system of equations a¥eSinceF is equationally Noetherian
the setY is a finite union of its irreducible components=Y; U --- U Y;. As we have
seen above, in this cag&(Y) is a minimal subdirect product df (Y1) x --- x I'(Y;). This
implies thatH; = H N I"(Y;) is a non-trivial subgroup off andH > Hy x --- x H;.

Now suppose that (H) = 1. In this event each group (Y;) is non-abelian (otherwise,
H; < Z(H)), hence it contains a subgroup which isomorphiétdNow by Theorem 3 the
coordinate groug™(Y;) is universally equivalent to the free group so it is a non-abelian
CSA group. Observe, thad; is a normal subgroup of a non-abelian CSA grdug;). It
implies thatH; is also non-abelian. Hencél; contains a copy of” as a subgroup. This
shows that contains the direct produ€; o of / copies ofF. Furthermore,

Glo<HSTI'(Y1) x---xI'(Y)) =v Gyo.

ThereforeH =v G, 0. This proves (1).
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Let now Z(H) # 1. If c € Z(H) andi € supfc) then 1 7;(c) € Z(I'(Y;)), hence
I (Y;) is abelian. Therefore, the groug; is abelian if and only ifl"(Y;) is abelian. Let
(Y1), ..., I'(Yy) be the only non-abelian groups among 8llY;). PutA = I' (Yy4+1) X
---x I'(Yy), SOA is atorsion-free abelian group. An argument similar to the case (1) shows
that

GroxZ<HLKI(Y1) X+ xT'(Yr) x A=v G0 X A.
Thus,H =y G, o x A. Observe, thatt =y Z, so
H =y Gy 0 x Z=v (Gg,1)
as required. O
The following result implies Theorem D from the introduction.

Corollary 6. Let H be a finitely generated group froqvar 7). Then there exists a unique
group G;; such thatucl(H) = ucl(Gy ;).
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