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Abstract

One of the main results of this paper is that elementary theories of coordinate groupsΓ (Yi) of
irreducible componentsYi of an algebraic setY over a groupG are interpretable in the coordina
groupΓ (Y ) of Y for a wide class of groupsG. This implies, in particular, that one can study mo
theory ofΓ (Y ) via the irreducible coordinate groupsΓ (Yi). This result is based on the techniq
of orthogonal systems of subdirect products of domains, which we develop here. It has som
interesting applications, for example, ifH is a finitely generated group from the quasi-variety gen
ated by a free non-abelian groupF , thenH is universally equivalent either to a unique direct prod
F l of l copies ofF or to the groupF l × Z, whereZ is an infinite cyclic.
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1. Introduction

1.1. Some notions from model theory

It has been shown in [9] that basic notions of algebraic geometry over groups
interesting connections with logic and universal algebra. We recall here a few nec
definitions and refer to [9] for details.

The standard language of group theory, which we denote byL, consists of a symbol fo
multiplication ·, a symbol for inversion−1, and a symbol for the identity 1.

Let X = {x1, . . . , xn} be a finite set of variables,X−1 = {x−1 | x ∈ X}, andX±1 =
X ∪ X−1. A group word in variablesX is a wordS(X) in the alphabetX±1. Observe,
that every term in the languageL is logically equivalent (modulo the axioms of grou
theory) to a group word inX. An atomic formulain the languageL is a formula of the type
S(X) = 1. Sometimes we refer to atomic formulas inL as (coefficient-free) equations, a
vice versa. ABoolean combinationof atomic formulas in the languageL is a disjunction
of conjunctions of atomic formulas or their negations. It follows from general resul
disjunctive normal forms that every formulaΦ(X) in L is logically equivalent to a formula
of the type

Q1z1Q2z2 . . .QnzmΨ (X,Z),

whereQi ∈ {∀,∃}, Z = {z1, . . . , zm}, andΨ (X,Z) is a Boolean combination of atom
formulas in variablesX ∪ Z. If in the formulaΦ(X) the set of free variablesX is empty
thenΦ is called asentencein L. In the sequel we assume that all formulas are inL (if not
said otherwise) and omit mentioningL.

If Φ(X) is a formula andG is a group, then for ann-tuple of elementsg = (g1, . . . , gn)

from G we writeG |= Φ(g) if Φ(X) holds inG on elements(g1, . . . , gn). By Φ(G) we
denote the truth set ofΦ:

Φ(G) = {
g ∈ Gn

∣∣ G |= Φ(g)
}
.

If G is a group, then the set Th(G) of all sentences which are valid inG is called the
elementary theoryof G. Two groupsG andH areelementarily equivalentif Th(G) =
Th(H). The theory Th(G) is decidableif there is an algorithm which for every sentenceφ

determines whether or notφ is true inG.
A class of groupsK is axiomaticif there exists a set of sentencesΣ such thatK consists

precisely of all groups satisfying all formulas fromΣ . In this event we say thatΣ is a set
of axiomsfor K. For a class of groupsK denote by Th(K) the elementary theory ofK, i.e.,
the set of all sentences of which are true in every group fromK. If K = {H } then we write
Th(H) instead of Th({H }) and use this approach in all similar circumstances.

The notion ofinterpretationprovides one of the most powerful tools in modern mo
theory (see, for example, [5,10,11]). It can be defined for arbitrary algebraic structure
we restrict ourselves to groups only.

A group codeC is a set of formulas{ }

C = U(X,P ),E(X,Y,P ),Mult(X,Y,Z,P ), Inv(X,Y,P ) , (1)
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whereX,Y,Z,P are tuples of variables with|X| = |Y | = |Z|. If P = ∅, thenC is called
anabsolute codeor 0-code.

Let C be a group code,H be a group, andB be an|P |-tuple of elements inH . We say
thatC (with parametersB) interprets a groupC(H,B) in H if the following conditions
hold:

(1) the truth setU(H,B) in H of the formulaU(X,B) (with parametersB) is non-empty;
(2) the truth set of the formulaE(X,Y,B) (with parametersB) defines an equivalenc

relation∼B onU(H,B);
(3) the formulas Mult(X,Y,Z,B) and Inv(X,Y,B) define, correspondingly, a binary o

eration (Z = Z(X,Y )) and a unary operation (Y = Y(X)) on the setU(H,B) compat-
ible with the equivalence relation∼B ;

(4) the set of equivalence classesU(H,B)/ ∼B forms a group with respect to the o
erations defined by Mult(X,Y,Z,B) and Inv(X,Y,B). We denote this group b
C(H,B).

We say that a groupG is interpretable (or definable) in a groupH if there exists a group
codeC and a set of parametersB ⊂ H such thatG 	 C(H,B). If C is 0-code thenG is
absolutelyor 0-interpretablein H . The following two types of interpretations are cruci
Let G be a definable subgroup of a groupH , i.e., there exists a formulaU(x,P ) and a set
of parametersB ⊂ H such that

G = {
g ∈ H | H |= U(g,B)

}
.

ThenG is interpretable inH by the code

CG = {
U(x,P ), x = y, xy = z, y = x−1}

with parametersB. If in additionG is a normal subgroup ofH , then the code

CH/G = {
x = x, ∃v

(
x = yv ∧ U(v,P )

)
, z = xy, y = x−1}

interprets the factor-groupH/G in H with parametersB.
Every group code (1) determines atranslationTC which is a map from the set of a

formulasFL in the languageL into itself. We defineTC by induction as follows:

(1) TC(x = y) = E(X,Y,P );
(2) TC(xy = z) = Mult(X,Y,Z,P ) andTC(x−1 = y) = Inv(X,Y,P );
(3) if φ,ψ ∈FL and◦ ∈ {∧,∨,→}, then

TC(φ ◦ ψ) = TC(φ) ◦ Tc(ψ) and TC(¬φ) = ¬TC(φ);

(4) if φ ∈ FL, then ( ) ( )

TC ∃xφ(x) = ∃X U(X,P ) ∧ TC(φ) ,
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TC

(∀xφ(x)
) = ∀X

(
U(X,P ) → TC(φ)

)
.

Observe, that the formulaTC(φ) can be constructed effectively fromφ.
Now we are ready to formulate the fundamental (but easy to prove) property of

pretations.
Let a group codeC interprets (with parametersB) a groupG in a groupH , and let

λ : G → C(H,B) be the corresponding isomorphism. Then for every formulaφ(X) and
every|X|-tupleA of elements fromG the following equivalence holds:

G |= φ(A) ⇐⇒ H |= TC(φ)
(
Aλ,B

)
.

In particular, a sentenceφ holds inG if and only if TC(φ)(B) holds inH .
If C is a 0-code, thenC(H) inherits some model theoretic properties ofH . For example,

if the theory Th(H) is decidable, orλ-stable, or has finite Morley rank, then so is the the
Th(C(H)) (it follows directly from the fundamental property of translations). Moreove
H ≡ K thenC(H) ≡ C(K).

Sometimes, we cannot 0-interpret a groupG in a groupH . In this case, however, on
can try to 0-interpret the elementary theory Th(G) in H . To explain, we need the followin
definition. LetG and H be groups. We say that the elementary theory Th(G) of G is
interpretable in the groupH if there exists a group codeC of the type (1) and a formul
Ψ (P ) such that Th(G) = Th(C(H,B)) for any set of parametersB ⊂ H that satisfies
the formulaΨ (P ) in H . It is not hard to see that the groupG still satisfies the sam
model-theoretic properties asH (in the sense mentioned above). We refer to [6] and [7]
details.

One of the main results of this paper is that elementary theories of coordinate g
of irreducible components of an algebraic setY over a groupG are interpretable in th
coordinate group ofY for a wide class of groupsG. We will say more about it in the
sequel.

1.2. Direct products of domains and orthogonal systems

In Section 2 we develop an approach to direct products of domains via orthogon
tems (of idempotents) similar to the classical one in the ring theory. To this end, follo
[1] we introduce a special binary operation, the so-called�-product, on a group.

Let G be a group. Forx, y ∈ G put

x � y = [
gpG(x),gpG(y)

]
.

We call a non-trivial elementx ∈ G azero-divisorin G if there exists a non-trivial elemen
y ∈ G such thatx � y = 1. In this event we also say thaty is orthogonalto x, and write
x ⊥ y. A groupG is termed adomainif it has no zero-divisors. The class of domains
fairly extensive, for example, it contains all non-abelian CSA groups and, in partic
all torsion-free hyperbolic groups. We refer to [1] for more details on zero-divisors

domains.
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For a subsetS ⊂ G put

S⊥ = {
g ∈ G | ∀s ∈ S(g � s = 1)

}
.

It is easy to see thatS⊥ is a normal subgroup ofG, it is called theorthogonal complemen
of S. In Section 2 we discuss various properties ofS⊥.

A systemE = {e1, . . . , em} ⊂ G is termedorthogonalif ei �= 1 andei � ej = 1 for all
1� i �= j � n. In Proposition 1 we prove the following basic result:

Let G = G1 × · · · × Gn be a finite direct product of domainsG1, . . . ,Gn. ThenG has
a unique(up to a permutation of factors) finite direct decomposition into indecomposa
groups. Moreover, it can be written as

G = (
e⊥

1

)⊥ × · · · × (
e⊥
n

)⊥
,

where{e1, . . . , en} is an arbitrary orthogonal system ofn elements inG.

The unique factorsG1, . . . ,Gn of the groupG above are calledcomponentsof G. It
turns out that the elementary theory ofG is completely determined by elementary theor
of its components, which allows one to reduce model-theoretic problems aboutG to the
corresponding problems for the components ofG. This result is based on the followin
theorem.

Theorem A. Let G be a finite direct product of domains. Then for each componentGi of
G its elementary theoryTh(Gi) is interpretable in the groupG.

Corollary A. Let G be a finite direct product of domainsG1, . . . ,Gn. Then the following
hold:

(1) If G ≡ H thenH is also a finite direct product of domains and if

G = G1 × · · · × Gk, H = H1 × · · · × Hm

are their component decompositions, thenk = m andGi ≡ Hi (after suitable ordering
of factors);

(2) Th(G) is decidable if and only ifTh(Gi) is decidable for everyi = 1, . . . , k;
(3) Th(G) is λ-stable(has finite Morley rank) if and only ifTh(Gi) is λ-stable(has finite

Morley rank) for everyi = 1, . . . , k.

1.3. Subdirect products of domains

In Section 3 we generalize results on direct products of domains to subdirect pr

of domains.
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Let G = G1 ×· · ·×Gk be a direct product of groupsGi . A subgroupH of G is called a
subdirect productof groupsGi if πi(H) = Gi for everyi = 1, . . . , n, whereπi : G → Gi

is the canonical projection. An embedding

λ : H ↪→ G1 × · · · × Gk (2)

is called asubdirect decompositionof H if λ(H) is a subdirect product of the groupsGi .
Sometimes, we identifyH with λ(H) via λ. The subdirect decomposition (2) is term
minimal if H ∩ Gi �= {1} for every i = 1, . . . , n (hereGi is viewed as a subgroup ofG
under the canonical embedding). It is easy to see that given a subdirect decompos
H one can obtain a minimal one (by deleting non-essential factors).

In Proposition 3 we prove that a minimal subdirect decomposition of a groupH into
products of domainsGi is unique. We refer to the domainsGi as tocomponentsof H .

Theorem B. LetH be a minimal subdirect product of domains. Then the elementary th
of each component ofH is interpretable in the groupH .

This result allows one to study model theory ofH via the components ofH .

1.4. Algebraic geometry over groups

Section 4 contains some applications of the developed techniques to algebraic ge
over groups. To explain this we recall some basic definitions from [1].

Let X = {x1, . . . , xn} be a finite set. For a groupG denote byG[X] the free produc
G∗F(X) of G and a free groupF(X) with basisX. An elementf ∈ G[X] may be viewed
as a word in the variablesX±1 with coefficients inG. Givenp = (g1, . . . , gn) ∈ Gn, we
can substituteg±1

i for x±1
i in f to obtain an elementf (p) ∈ G. If f (p) = 1, we think of

p as a solution of the equationf = 1. More generally, a subsetS of G[X] gives rise to a
system of equationsS(X) = 1 overG. The set

VG(S) = {
p ∈ Gn

∣∣ f (p) = 1 for all f ∈ S
}

is termed thealgebraic setoverG defined byS. Put

Rad(S) = {
f ∈ G[X] ∣∣ f (p) = 1 for all p ∈ Y

}
.

Clearly, Rad(S) is a normal subgroup ofG[X], it is called theradicalof S. The factor group
Γ (Y ) = G[X]/Rad(S) is termed thecoordinate groupof the algebraic setY = VG(S).

One can define a so-calledZariski topologyonGn by taking algebraic sets as a sub-ba
for closed sets. A groupG is said to beequationally Noetherianif, for everyn > 0 and any
subsetS of G[x1, . . . xn], there exists a finite subsetS0 of S such thatVG(S) = VG(S0). Ob-
serve, that every linear group is equationally Noetherian, in particular, every free gr
equationally Noetherian (see [1,2,4]). It turns out that a groupG is equationally Noetheria
if and only if the Zariski topology onGn is Noetherian for every positiven. We recall that

a topological space isNoetherianif it satisfies the descending chain condition on closed
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subsets. Noetherian topological spaces have a very nice property: every closed
finite union of irreducible ones (a non-empty subsetY is irreducible if it is not a union
Y = Y1 ∪ Y2 of proper subsets, each of which is relatively closed inY ). The following two
results path the way for applications of the orthogonal systems into algebraic geo
over groups.

Theorem 1 [1]. Every algebraic setY over an equationally Noetherian groupG is a finite
union of irreducible algebraic sets, each of which is uniquely determined byY . (They are
called the irreducible components ofV .)

Theorem 2 [1]. Let G be an equationally Noetherian group andY be an algebraic se
overG. If Y1, . . . , Yk are the irreducible components ofY then the coordinate groupΓ (Y )

is a minimal subdirect product of the coordinate groupsΓ (Y1), . . . ,Γ (Yk).

It might happen, in general, that the coordinate groupsΓ (Yi) are not domains. So, t
be able to apply our technique we need to put some restrictions on the groupG = Γ (Y ).
Recall [8] that a groupG is called CSA if all maximal abelian subgroups ofG aremal-
normal (a subgroupM � G is malnormal if for every non-trivialm ∈ M andx ∈ G − M

the conjugatex−1mx is not inM). We refer to [8] and [1] for a detailed discussion of CS
groups. Here we just observe that the class of CSA groups is quite wide (it contain
example, all torsion-free hyperbolic groups) and that every non-abelian CSA grou
domain. Now, combining Theorems 2 and B, we obtain the following remarkable res

Theorem C. LetG be an equationally Noetherian, non-abelian CSA-group,Y be an alge-
braic set overG, andΓ (Y ) be the coordinate group ofY . Then for each componentYi the
elementary theoryTh(Γ (Yi)) is interpretable in the groupΓ (Y ).

As we have seen above, this implies various model-theoretic results relating coor
groups and their irreducible components.

1.5. Universal classes and axioms

In Section 5 we give another application of orthogonal systems to universal algeb
begin with a few necessary definitions and refer to [9] for details.

A universal sentencein the languageL is a formula of the type∀XΦ(X,Y ), whereX

andY are tuples of variables, andΦ(X,Y ) is a Boolean combination of atomic formul
in L.

A class of groupsK is calleduniversalif it can be axiomatized by a set of univers
sentences. For a class of groupsK denote by Th∀(K) the universal theory ofK, i.e., the set
of all universal sentences ofL which are true in every group fromK. Two groupsH and
K areuniversally equivalent(in writing H ≡∀ K) if Th∀(H) = Th∀(K). The universal

closureof K is the axiomatic class ucl(K) with the set of axioms Th∀(K).
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Some universal classes are of particular interest. For example, avariety is a universal
class axiomatized by a set ofidentities, i.e., universal formulas of the type

∀X

(
m∧

i=1

ri(X) = 1

)
, (3)

whereri(X) is a group word inX. A class of groupsK is calleda quasivarietyif it can be
axiomatized by a set of quasi identities, which are universal formulas of the type

∀X

(
m∧

i=1

ri(X) = 1→ s(X) = 1

)
, (4)

whereri(X) ands(X) are group words inX.
For a class of groupsK denote byQ(K) the set of all quasi identities in the languageL

which hold in all groups fromK. Clearly,Q(K) is a set of axioms of theminimalquasiva-
riety qvar(K) containingK. Observe, that every variety is a quasivariety.

A classK is calleda prevarietyif it is closed under taking subgroups and cartes
products. It is not hard to see that the minimal prevariety pvar(K) containingK consists of
subgroups of cartesian products of groups fromK. It follows that for any classK

pvar(K) ⊆ qvar(K) ⊆ var(K).

The following result links algebraic geometry over groups to universal algebra.

Theorem 3 [9]. LetH be an equationally Noetherian group. Then the following hold:

(1) a finitely generated groupK is the coordinate group of an algebraic set overH if and
only if it belongs toqvar(H);

(2) a finitely generated groupK , containingH as a subgroup, is the coordinate group
an irreducible algebraic set overH if and only ifucl(K) = ucl(H), i.e.,K ≡∀ H . In
this event,K is also equationally Noetherian.

The main result of Section 5 gives a description of the universal closure ucl(H) of any
finitely generated groupH from qvar(F ), whereF is a free non-abelian group. It turns o
that each such class ucl(H) contains a unique representative. Namely, for a non-neg
integerl define

Gl,0 = F × · · · × F︸ ︷︷ ︸
l

, Gl,1 = F × · · · × F︸ ︷︷ ︸
l

× Z.

Then the following result holds.

Theorem D. Let F be a free non-abelian group andH be a finitely generated group from
qvar(F ). Thenucl(H) = ucl(Gl,i ) for a suitablel and i. Moreover,ucl(Gl,i) = ucl(Gk,j )
if and only if l = k andi = j .
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Let G be a group. In Section 1.2 for any elementsx, y ∈ G we introduced the�-product
x � y and said thatx is orthogonal toy (x ⊥ y) if x � y = 1. In this section we use thes
notions to study direct decompositions of groups.

Recall that theorthogonal complement(or the�-annihilator) of a subsetS ⊆ G is de-
fined by

S⊥ = {y ∈ G | for all x ∈ S x ⊥ y}. (5)

Sometimes, following ring theory, we denoteS⊥ by Ann(S). Notice that for anyS ⊂ G

S⊥ = gpG(S)⊥.

Lemma 1. For anyS ⊂ G the orthogonal complementS⊥ is a normal subgroup ofG.

Proof. Clearly

S⊥ =
⋂{

C
(
sg

) ∣∣ g ∈ G, s ∈ S
}
,

hence it is normal, as required.�
Note thatG is a domain if and only if for any non-trivialx ∈ G, x⊥ = {1}.
Observe also, that for anyx

x ⊥ x ⇐⇒ x � x = 1 ⇐⇒ gpG(x) is abelian.

More generally, an elementx ∈ G is �-nilpotentof degreek if k is the minimal positive
integer such that

(
. . . (x � x) � . . .

) � x︸ ︷︷ ︸
k

= 1,

i.e., if gpG(x) is a normal nilpotent subgroup ofG of classk (see [1] for details). In this
eventy ⊥ y for any central non-trivialy in gpG(x). This argument suggests the followin
definition.

Definition 1. A groupG is called�-semiprime (or semiprime), if the following equivale
conditions hold:

(1) x � x �= 1 for any non-trivialx ∈ G;
(2) there are no nilpotent elements inG;

(3) there are no normal nilpotent subgroups inG.
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It is easy to see that every domain is semiprime, as well as a direct product of do
But a subgroup of a semiprime group need not to be semiprime.

The following result justifies the name ofS⊥ by showing thatS⊥ is a unique maxima
normal direct complement of gp(S) in G.

Lemma 2. LetG be a semiprime group. Then for anyS ⊂ G the following conditions hold:

(1) gp(S,S⊥) = gp(S) × S⊥;
(2) gpG(S,S⊥) = gpG(S) × S⊥;
(3) if gp(S,A) = gp(S) × A for some normal subgroupA � G, thenA � S⊥.

Proof. Let S ⊆ G. By Lemma 1 the complementS⊥ is a normal subgroup ofG. From
the definition of the�-product follows that[gpG(S), S⊥] = 1. SinceG is semiprime
there are no non-trivial elementsx ∈ G with x � x = 1, hence gpG(S) ∩ S⊥ = 1. This
shows (1) and (2). To see (3) it suffices to notice that if[S,A] = 1 for a subsetA ⊆ G then
A ⊆ S⊥. �

Recall that a systemE = {e1, . . . , em} ⊂ G is orthogonalif ei �= 1 andei � ej = 1 for
all 1� i �= j � n.

An orthogonal systemE ⊂ G is calledmaximal if E⊥ = 1, it is calledreducedif every
element ofE is reduced, i.e., it is not a product of two non-trivial orthogonal eleme
By the Zorn’s lemma every (reduced) orthogonal system of a groupG is contained in a
maximal (reduced) orthogonal system.

Now, following classical ring theory, we develop an approach to direct decompos
of semiprime groups via orthogonal systems.

Let

G = G1 × · · · × Gn (6)

be a direct product of groups. Byπi : G → Gi we denote the canonical projectio
(g1, . . . , gn) → gi . Sometimes we identify the groupGi with its image inG under the
canonical embeddinggi → (1, . . . , gi, . . . ,1). A direct decompositionG = G1 × · · ·×Gn

is called reducedif eachGi is a non-trivial directly indecomposable group. We say thaG

has a unique (up to a permutation of factors) direct decomposition (6) if for any oth
duced direct decompositionG = H1 × · · · × Hm one hasm = n and there is a permutatio
σ ∈ Sym(n) such thatGi = Hσ(i) for everyi = 1, . . . , n.

For an elementg ∈ G by supp(g) we denote the support ofg, i.e., the set{i | πi(g) �= 1}.

Proposition 1. Let G = G1 × · · · × Gn be a finite direct product of domainsG1, . . . ,Gn.
Then the following hold:

(1) Elementsg,h ∈ G are orthogonal if and only ifsupp(g) ∩ supp(h) = ∅.
(2) A systemE ⊂ G is maximal reduced orthogonal if and only if it is orthogonal a
|E| = n. Moreover, in this eventE = {e1, . . . , en} where1 �= ei ∈ Gi .
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(3) For anygi ∈ Gi

g⊥
i = gp(Gj | j �= i),

(
g⊥

i

)⊥ = Gi.

(4) G has a unique(up to a permutation of factors) reduced direct decomposition, mor
over, it can be written as

G = (
e⊥

1

)⊥ × · · · × (
e⊥
n

)⊥
,

where{e1, . . . , en} is an arbitrary orthogonal system ofn elements inG.

Proof. (1) is obvious. It follows from (1) that any systemE = {e1, . . . , en} with
1 �= ei ∈ Gi is orthogonal (ei � ei �= 1 sinceGi is a domain). Now ifg ∈ E⊥ then for
every i supp(g) ∪ supp(ei) = ∅, hence supp(g) = ∅, i.e., g = 1. This shows thatE is
maximal. To see that eachei is reduced (not a product of two non-trivial orthogonal
ements) it suffices to notice that ifx ⊥ y then supp(xy) = supp(x) ∪ supp(y). Observe
also, that the argument above shows that ifE is an orthogonal system ofn elements then
{supp(e) | e ∈ E} is a system ofn disjoint subsets of{1, . . . , n}, hence|supp(e)| = 1 for
everye ∈ E, as required.

Conversely, ifE is a maximal reduced orthogonal system inG, then{supp(e) | e ∈ E}
is a system of disjoint subsets of{1, . . . , n}. SinceE is reduced then|supp(e)| = 1 for
any e ∈ E. Indeed, lete ∈ E and supp(e) = I ∪ J for some non-empty and disjointI, J .
Thene = e(I )ė(J ) for some non-triviale(I ), e(J ) with supp(e(I )) = I , supp(e(J )) = J—
contradicting to the condition thate is reduced. This shows that|supp(e)| = 1 and in view
of maximality ofE the condition (2) holds.

To see (3) fix an element 1�= gi ∈ Gi and notice thatGj ⊂ g⊥
i for everyj �= i. Sinceg⊥

i

is a subgroup ofG it follows that gp(Gj | j �= i) ⊂ g⊥
i . Now, if gp(Gj | j �= i) �= g⊥

i then
there exists a non-trivial elementf ∈ Gi ∩ g⊥

i . It follows thatf � gi = 1—contradiction
with the condition thatGi is a domain. This proves the first equality in (3), a sim
argument proves the second one.

(4) follows from (2) and (3). Indeed, letE be a maximal reduced orthogonal system
G (it exists by Zorn’s lemma). It follows from (2) that any reduced direct decompositio
G has precisely|E| factors. Moreover, eache from E belongs to one and only one fact
from a given reduced decomposition ofG and by (3) that factor is equal to(e⊥)⊥.

This proves the proposition.�
Notation. Let Dk be the class of groups which are direct products ofk non-trivial domains,
and

Dω =
⋃
k

Dk.

By Proposition 1 for a groupG ∈ Dω the reduced direct decompositionG = G1 ×
· · · × Gk is unique (up to an ordering of factors). We will refer to these factorsGi as to
componentsof G. By comp(G) we denote the number of components ofG.
Now we are ready to discuss model theoretic properties of direct products of domains.
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Lemma 3. For every positive integerk there exists a universal formulaOrtk(x1, . . . , xk)

such that for a groupG and ak-tupleE ∈ Gk the formulaOrtk(E) holds inG if and only
if E is an orthogonal system inG.

Proof. Set

Ort2(x1, x2) = ∀y
([

x1
y, x2

] = 1∧ x1 �= 1∧ x2 �= 1
)
.

For any groupG if the formula Ort2(x1, x2) holds ong,h ∈ G theng andh are non-trivial
andg ⊥ h. Now for k � 3 put

Ortk(x1, . . . , xk) =
∧

1�i<j�k

Ort2(xi, xj ).

Obviously, Ortk holds on elementsg1, . . . , gk ∈ G if and only if {g1, . . . , gk} is an orthog-
onal system inG. This proves the lemma.�

The following result shows that for each groupG ∈ Dk the set of elementsg with
|supp(g)| = 1 is definable inG, as well as each component ofG.

Lemma 4. Let k be a positive integer. Then there exists a formulaCompk(x,p) and a
formulaPk(p) such that for each groupG ∈ Dk the following conditions hold:

(1) for anyg ∈ G

G |= Pk(g) ⇐⇒ ∣∣supp(g)
∣∣ = 1;

(2) for anyg ∈ G with |supp(g)| = 1 the truth setComp(G,g) of the formulaComp(x, g)

coincides with the componentGg of G containingg.

Proof. Let

Pk(p) = ∃x2 . . .∃xk Ortk(p, . . . , xk).

Then, in view of Lemma 3,Pk(g) holds ong ∈ G if and only if g is a part of an orthogona
system ofk elements. Hence, by Proposition 1|supp(g)| = 1, as required.

To show (2) put

Compk(x,p) = ∀y (y � p = 1→ x � y = 1),

wherey�p = 1 is viewed as the formula∀z[y, z−1pz] = 1, and similarly forx�y. Clearly,
the truth set Compk(G,g) of the formula Compk(x, g) coincides with(g⊥)⊥, which is
equal, by Proposition 1, to the component ofG containingg. This proves (2) and th
lemma. �
Now we are ready for the proof of Theorem A from the introduction.
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Theorem A. Let G be a finite direct product of domains. Then the elementary theo
each component ofG is interpretable in the groupG.

Proof. Let G ∈ Dk andG = G1×· · ·×Gk be its component decomposition. By Lemm
there exist formulasPk(p) and Compk(x,p) such that for anyg ∈ G for which Pk(g)

holds in G the formula Compk(x, g) with the parameterg defines a component ofG,
containingg. In particular, every component ofG occurs as the truth set of Compk(x, g)

for someg. By Lemma 1 for an arbitraryg ∈ G the formula Comp(x, g) defines a subgrou
(perhaps, trivial) ofG. This shows that the formula Compk(x,p) gives rise to a group cod
(see Section 1.1)

C = {
Compk(x,p),E(x, y,p),Mult(x, y, z,p), Inv(x, y,p)

}
in whichE(x,y,p) is the standard equality inG and the formulas Mult, Inv are the mult
plication and the inversion inG. To show that for every componentGi its elementary the
ory Th(Gi) is interpretable inG it suffices to construct a formulaPki(p) such that for every
g ∈ G if Pki(g) holds inG then the codeC with the parameterg interprets inG a compo-
nentGj with the same elementary theory as the givenGi , i.e., Th(C(G,g)) = Th(Gi). To
this end, fix a componentGi of G and consider the set of indices

Ji = {
j

∣∣ 1� j � k, Th(Gj ) �= Th(Gi)
}
.

Then for everyj ∈ Ji there exists a sentenceφij such thatφij ∈ Th(Gi), butφij /∈ Th(Gj ).
Put

ψi =
∧
j∈Ji

φij .

Clearly,ψi holds in a componentGm if and only if Th(Gm) = Th(Gi). By the fundamen
tal property of interpretations (Section 1.1) for everyg satisfyingPk(g) the translation
TC(ψi)(g) holds inG if and only if ψi holds inC(G,g). This implies that the formula

Pki(p) = Pk(p) ∧ TC(ψi)(p)

holds on an elementg ∈ G if and only if the codeC with the parameterg interprets inG a
component with the same elementary theory as ofGi . Therefore, the elementary theory
each component ofG is interpretable inG. This proves the theorem.�
Corollary 1. LetG ∈ Dk and

G = G1 × · · · × Gk

be its component decomposition. Then the following hold:

(1) Th(G) is decidable if and only ifTh(Gi) is decidable for everyi = 1, . . . , k;

(2) Th(G) is λ-stable if and only ifTh(Gi) is λ-stable for everyi = 1, . . . , k.
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Proof. Let Th(G) be decidable. By Theorem A, the elementary theory Th(Gi) is inter-
pretable inG for each componentGi by the group codeC and the formulaPki (see the
argument in the proof of the theorem). Then from the fundamental property of inter
tions we see that for any sentenceφ

Gi |= φ �⇒ G |= TC(φ).

Since the translationTC is an effective map the elementary theory Th(Gi) is also decidable
Conversely, if every componentGi has a decidable elementary theory then the elemen
theory of their finite direct productG = G1 × · · · × Gk is also decidable. This is due
S. Feferman and R. Vaught [3]. This proves (1). The proof of the statement (2) is s
and we omit it. �

Our next result shows that the number of components of a group fromDω is also a
logical invariant of the group.

Proposition 2. For every positive integerk the classDk is finitely axiomatizable.

Proof. We use notations from Theorem A. Fork = 1 put

A1 = ∀x∀y∃z
(
x �= 1∧ y �= 1 → [

x, yz
] �= 1

)
.

Clearly,A1 axiomatizes the class of all domainsD1.
Let k � 2. Denote byAk a first-order sentence in group theory language which says

there are elementse1, . . . , ek ∈ G such that the following conditions hold:

(a) The systemE = {e1, . . . , ek} is an orthogonal system inG (one needs the formul
Ortk(x1, . . . , xk) from Lemma 3 to write down this condition).

(b) For everyei ∈ E the set(e⊥
i )⊥ is a normal subgroup ofG (can be easily done usin

the formula Compk(x,p) from Lemma 4). Denote this subgroup byGi .
(c) G = G1 × · · · × Gk . To write down this condition by a formula it suffices to noti

that since the subgroupsGi are normal inG the following equalities hold for eac
i = 1, . . . , k:

gp(Gj | j �= i) = G1 . . .Gi−1Gi+1 . . .Gk.

Indeed, now one can easily write down that

Gi ∩ gp(Gj | j �= i) = 1 and G = G1 . . .Gk.

(d) Gi is a domain for everyi = 1, . . . , k. This is equivalent to the condition thatA1 holds
in eachGi . Observe, that the translationTC(A1)(g) holds inG if and only ifA1 holds
in the interpretationC(G,g). Hence, it suffices to write down the conjunction of t
formulasTC(A1)(ei) for everyei ∈ E.
Clearly, a groupG belongs toDk if and only if G satisfies the axiomAk . �
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Now we can describe arbitrary groups which are elementary equivalent to a given
from Dk .

Corollary 2. Let G,H be groups andG ∈ Dk . ThenG ≡ H if and only if H ∈ Dk and
Gi ≡ Hi , whereGi,Hi are components ofG andH in a suitable enumeration.

Proof. The result follows from Theorem A, Proposition 2, and the fundamental prop
of interpretations. �

Notice that Corollary A from the introduction summarizes the results from Corollar
and 2.

Remark 1. One can generalize some of the results above to the case whenG = H × C,
whereH ∈ Dk andC is an abelian group.

Indeed, in this caseC is the center ofG, hence it is definable inG, as well as the
quotient groupG/C 	 H . We leave details to the reader.

3. Subdirect products

In this section we generalize results from Section 2 to subdirect products of dom
Throughout this section we continue to use notations from the previous sections.

Let G = G1 × · · · × Gk be a direct product of groupsGi . Recall, that a subgroupH of
G is called asubdirect productof groupsGi if πi(H) = Gi for everyi = 1, . . . , n.

An embedding

φ : H ↪→ G1 × · · · × Gk (7)

is called asubdirect decompositionof H if φ(H) is a subdirect product of the groupsGi .
Sometimes, we identifyH with φ(H) alongφ, andGi with its canonical image inG =
G1 ×· · ·×Gk . The subdirect decomposition (7) termedminimalif H ∩Gi �= {1} for every
i = 1, . . . , n (hereGi andH are viewed as subgroups ofG).

The following simple lemma shows that given a subdirect decomposition ofH one can
obtain a minimal one by deleting non-essential factors.

Lemma 5. Let φ : H ↪→ G1 × · · · × Gk be a subdirect decomposition of a groupH . Then
there is a subsetJ ⊂ {1, . . . , k} and an embeddingφ∗ : H ↪→ ∏

j∈J Gj such thatφ∗ is a
minimal subdirect decomposition ofH .

Proof. Let I be a maximal subset of{1, . . . , k} such that

H ∩
∏

Gi = {1}.

i∈I
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Then the following composition of homomorphisms

H
φ

↪→
k∏

i=1

Gi →
k∏

i=1

Gi

/∏
i∈I

Gi 	
∏
j /∈I

Gj

gives rise to the required embeddingφ∗.
Let H be a subgroup ofG. For elementsx, y ∈ H we have two different types of�-

products, with respect to the groupsH andG:

x �H y = [
gpH (x),gpH (y)

]
, x �G y = [

gpG(x),gpG(y)
]
.

We use subscripts to notify in which group the corresponding object takes place a
this approach in all other similar circumstances (for example,x ⊥H y, or x ⊥G y). �
Lemma 6. LetH � G1 × · · · × Gk be a subdirect product of groupsG1, . . . ,Gk . Then for
elementsx, y ∈ H the following equivalence holds:

x �H y = 1 ⇐⇒ x �G y = 1.

Proof. Put I = {1, . . . , k}. SinceH is a subdirect product of groupsG1, . . . ,Gk for any
h ∈ H andi ∈ I one has

πi

(
gpH (h)

) = gpGi

(
πi(h)

)
.

It follows that for anyx, y ∈ H ,

x �H y = 1 ⇐⇒ [
gpH (x),gpH (y)

] = 1

⇐⇒ ∀i ∈ I πi

([
gpH (x),gpH (y)

]) = 1

⇐⇒ ∀i ∈ I
[
πi

(
gpH (x)

)
,πi

(
gpH (y)

)] = 1

⇐⇒ ∀i ∈ I
[
gpGi

(
πi(x)

)
,gpGi

(
πi(y)

)] = 1

⇐⇒ ∀i ∈ I πi(x) �Gi
πi(y) = 1

⇐⇒ x �G y = 1.

This proves the lemma.�
Proposition 3. LetG = G1×· · ·×Gk be a direct product of non-trivial domains andH ↪→
G1 × · · · × Gk be a minimal subdirect decomposition of a groupH . Then the following
hold:

(1) for x, y ∈ H , x ⊥H y ⇔ supp(x) ∩ supp(y) = ∅;
(2) let E ⊂ H be an orthogonal system inH . Then|E| � k and |E| = k if and only if
E = {e1, . . . , ek} where1 �= ei ∈ H ∩ Gi ;
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(3) for anyhi ∈ H ∩ Gi ,

h
⊥H

i = H ∩ kerπi, H/h
⊥H

i 	 Gi,
(
h

⊥H

i

)⊥H = H ∩ Gi;
(4) H has a unique(up to a permutation of factors) minimal subdirect decomposition in

a product of domains. Moreover, it can be written as

H ↪→ H/h
⊥H

1 × · · · × H/h
⊥H

k ,

where{h1, . . . , hk} is an arbitrary orthogonal system ofk elements inH .

Proof. It follows from Proposition 1 and Lemma 6.�
Notation. Denote bySDk the class of groups which are minimal subdirect productsk
domains, and putSDω = ⋃

k SDk .

By Proposition 3 a groupH ∈ SDω has a unique (up to a permutation of factors) m
mal subdirect decompositionH ↪→ G1 ×· · ·×Gk into a product of domains. We will refe
to these factorsGi as tocomponentsof H .

Lemma 7. A group G ∈ SDω has exactlyk components if and only ifG satisfies the
sentence∃Xk Ortk(Xk) ∧ ¬(∃Xk+1 Ortk+1(Xk+1)).

Proof. Follows from Lemma 3 and Proposition 3.�
Theorem B. LetH be a minimal subdirect product of domains. Then the elementary th
of each component ofH is interpretable in the groupH .

Proof. Note that for anyhi ∈ H ∩ Gi the normal subgroup

h
⊥H

i

{
x ∈ H

∣∣ ∀v
([

x,hv
i

] = 1)
}

is definable inH . Hence the factor-groupH/h
⊥H

i is interpretable inH (see Section 1.1)
The rest of the proof is similar to that one in Theorem A.

From the properties of interpretations we deduce similar to the case of direct dec
sitions (see Corollary 1) the following results.�
Corollary 3. LetH ∈ SDk and

H ↪→ G1 × · · · × Gk

be its minimal component decomposition. Then the following hold:

(1) if Th(H) is decidable thenTh(Gi) is decidable for everyi = 1, . . . , k;

(2) if Th(H) is λ-stable thenTh(Gi) is λ-stable for everyi = 1, . . . , k.
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Theorem 4.

(1) For every positive integerk classSDk is finitely axiomatizable.
(2) Let H,K be groups andH ∈ SDk . If K ≡ H thenK ∈ SDk and Hi ≡ Ki , where

Hi,Ki are components ofH andK in a suitable enumeration.

Proof. (1) There exists a first order sentenceBk in the group theory language which hol
in a groupH if and only if there are elementsh1, . . . , hk ∈ H such that the following
conditions hold:

(a) The systemE = {h1, . . . , hk} is a maximal orthogonal system inH (one can use th
formula Ortk to write down this condition).

(b) For everyhi ∈ E the seth⊥
i is a normal subgroup ofH (obvious formula).

(c) H/hi
⊥ is a domain for everyhi ∈ E (by Theorem B the groupH/hi

⊥ is interpretable
in H . Since domains are axiomatic one can use the fundamental property of the
pretations to write down this condition).

(d) h⊥
1 ∩ · · · ∩ h⊥

k = 1 (obvious formula). Clearly ifH |= Bk , then

H ↪→ H/h⊥
1 × · · · × H/h⊥

l ,

henceH ∈ SDk .

(2) The result follows from statement (1), Theorem B, the fundamental property
terpretations, and the fact that the corresponding components ofH andK are interpretable
in H andK by the same codes.�

4. Irreducible components of algebraic sets

In this section we apply the technique of orthogonal systems to coordinate gro
algebraic sets over equationally Noetherian non-abelian CSA groups.

Theorem 5. Let G be an equationally Noetherian non-abelian CSA-group, andY be an
algebraic set overG. Then the following conditions hold:

(1) the number of irreducible components ofY is equal tok if and only ifΓ (Y ) satisfies
the formula∃X Ortk(X) and does not satisfy the formula∃X Ortk+1(X);

(2) the coordinate groupΓ (Yi) of each irreducible componentYi of Y is interpretable in
the groupΓ (Y );

(3) the elementary theoryTh(Γ (Yi)) of each irreducible componentYi of Y is inter-
pretable in the groupΓ (Y ).

Proof. Let Y = Y1 ∪ · · · ∪ Yk be a decomposition ofY as a union of irreducible compo
nents. By Theorem 2 (see Section 1.4) the coordinate groupΓ (Y ) is a minimal subdirec

product of the coordinate groupsΓ (Y1), . . . ,Γ (Yk). Every groupΓ (Yi) is universally
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equivalent toG [1], therefore it is a non-abelianCSA-group, hence a domain. Now (1)–(
follow from Theorem B, Lemma 7, and Proposition 3. This proves the theorem.�

Observe, that Theorem C from the introduction is just a part of Theorem 5.

Corollary 4. Let G be an equationally Noetherian non-abelian CSA group andY be an
algebraic set overG. Then the following conditions hold:

(1) if Th(Γ (Y )) is decidable, thenTh(Γ (Yi)) is decidable for every irreducible comp
nentYi of Y ;

(2) if Th(Γ (Y )) is λ-stable, thenTh(Γ (Yi)) is λ-stable for every irreducible compone
Yi of Y .

5. Universal subclasses of qvar(F )

Recall that a group iscommutative transitiveif it satisfies the following axiom:

CT = ∀x, y, z
(
x �= 1∧ [y, x] = 1∧ [z, x] = 1→ [y, z] = 1

)
.

Let Xn = {x11, x12, . . . , xn1, xn2}. Consider the following open formulas:

Φn(Xn) =
n∧

i=1

([xi1, xi2] �= 1
) n∧

i �=j=1

(
2∧

k,l=1

[xik, xjl] = 1

)
,

Ψn(Xn, z) = Φn(Xn)

n∧
i=1

(
2∧

l=1

[z, xil] = 1

)
.

Lemma 8. LetG = G1×· · ·×Gk be a direct product of non-trivial commutative–transiti
groups. Then the following holds:

(1) G satisfies the existential formula∃XnΦn(Xn) if and only if at leastn of the groups
G1, . . . ,Gk are non-abelian;

(2) G satisfies the existential formula∃Xn∃zΨn(Xn, z) if and only if at leastn of the
groupsG1, . . . ,Gk are non-abelian, and at least one of them is abelian.

Proof. We start with the following.

Claim 1. Let G |= Φ2(u1, u2, v1, v2) for some elementsu1, u2, v1, v2 ∈ G. Then

supp([u1, u2]) ∩ (supp(v1) ∪ supp(v2)) = ∅.



A. Kvaschuk et al. / Journal of Algebra 288 (2005) 78–98 97

nts

,

n

,

s

Indeed, since[u1, u2] �= 1 then supp([u1, u2]) �= ∅. Let i ∈ supp([u1, u2]). If i ∈
supp(v1) then the following holds in the groupGi :[

πi(u1),πi(u2)
] �= 1,

[
πi(u1),πi(v1)

] = 1,
[
πi(u2),πi(v1)

] = 1,

πi(v1) �= 1.

This contradicts to the condition thatGi is commutative–transitive. Hencei /∈ supp(v1).
Similarly, i /∈ supp(v2). The claim follows.

Notice now, that if, say, the groupsG1, . . . ,Gn are non-abelian then the set of eleme
Un = {u11, u12, . . . , un1, un2} such thatui1, ui2 ∈ Gi and[ui1, ui2] �= 1, satisfiesΦn(Xn)

in G.
Conversely, suppose a set of elementsUn from G satisfiesΦn(Xn) in G. Take any

im ∈ supp([um1, um2]). By the claim aboveim /∈ supp(ujl) for everyj �= m andl = 1,2. In
particular,im /∈ supp([uj1, uj2]). It implies that the groupsGi1, . . . ,Gin are non-abelian
as required. This proves (1). The statement (2) easily follows from (1).�

Let F be a non-abelian free group. For a non-negative integerl put

Gl,0 ∼= F × · · · × F︸ ︷︷ ︸
l

, Gl,1 ∼= F × · · · × F︸ ︷︷ ︸
l

× Z.

Obviously, Lemma 8 implies the following result.

Corollary 5.

Gn,i ≡∀ Gm,j ⇐⇒ m = n andi = j.

Theorem 6. LetH be a finitely generated group fromqvar(F ). Then the following holds:

(1) if Z(H) = 1, thenH ≡∀ Gl,0 for some positive integerl;
(2) if Z(H) �= 1, thenH ≡∀ Gl,1 for some positive integerl.

Proof. By Theorem 3, the groupH is a coordinate groupΓ (Y ) of an algebraic setY de-
fined by a coefficient-free system of equations overF . SinceF is equationally Noetheria
the setY is a finite union of its irreducible componentsY = Y1 ∪ · · · ∪ Yl . As we have
seen above, in this caseΓ (Y ) is a minimal subdirect product ofΓ (Y1)× · · ·×Γ (Yl). This
implies thatHi = H ∩ Γ (Yi) is a non-trivial subgroup ofH andH � H1 × · · · × Hl .

Now suppose thatZ(H) = 1. In this event each groupΓ (Yi) is non-abelian (otherwise
Hi � Z(H)), hence it contains a subgroup which isomorphic toF . Now by Theorem 3 the
coordinate groupΓ (Yi) is universally equivalent to the free groupF , so it is a non-abelian
CSA group. Observe, thatHi is a normal subgroup of a non-abelian CSA groupΓ (Yi). It
implies thatHi is also non-abelian. Hence,Hi contains a copy ofF as a subgroup. Thi
shows thatH contains the direct productGl,0 of l copies ofF . Furthermore,

Gl,0 � H � Γ (Y1) × · · · × Γ (Yl) ≡∀ Gl,0.
ThereforeH ≡∀ Gl,0. This proves (1).
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Let now Z(H) �= 1. If c ∈ Z(H) and i ∈ supp(c) then 1�= πi(c) ∈ Z(Γ (Yi)), hence
Γ (Yi) is abelian. Therefore, the groupHi is abelian if and only ifΓ (Yi) is abelian. Let
Γ (Y1), . . . ,Γ (Yk) be the only non-abelian groups among allΓ (Yi). PutA = Γ (Yk+1) ×
· · ·×Γ (Yl), soA is a torsion-free abelian group. An argument similar to the case (1) s
that

Gk,0 × Z � H � Γ (Y1) × · · · × Γ (Yk) × A ≡∀ Gk,0 × A.

Thus,H ≡∀ Gk,0 × A. Observe, thatA ≡∀ Z, so

H ≡∀ Gk,0 × Z ≡∀ (Gk,1)

as required. �
The following result implies Theorem D from the introduction.

Corollary 6. LetH be a finitely generated group fromqvar(F ). Then there exists a uniqu
groupGl,i such thatucl(H) = ucl(Gl,i ).
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